mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Static Allocation of Parallel Tasks to Improve Schedulability in CPU-GPU Heterogeneous Real-Time Systems
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-8096-3891
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-1276-3609
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-8785-5380
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-1687-930X
Show others and affiliations
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Autonomous driving is one of the main challenges of modern cars. Computer visions and intelligent on-board decision making are crucial in autonomous driving and require heterogeneous processors with high computing capability under low power consumption constraints. The progress of parallel computing using heterogeneous processing units is further supported by software frameworks like OpenCL, OpenMP, CUDA, and C++AMP. These frameworks allow the allocation of parallel computation on different compute resources. This, however, creates a difficulty in allocating the right computation segments to the right processing units in such a way that the complete system meets all its timing requirements. In this paper, we consider pre-runtime static allocations of parallel tasks to perform their execution either sequentially on CPU or in parallel using a GPU. This allows for improving any unbalanced use of GPU accelerators in a heterogeneous environment. By performing several heuristic algorithms, we show that the overuse of accelerators results in a bottle-neck of the entire system execution. The experimental results show that our allocation schemes that target a balanced use of GPU improve the system schedulability up to 90%.

Place, publisher, year, edition, pages
2019.
Keywords [en]
Parallel task, Parallel segment, Alternative execution, CPU-GPU, Heterogeneous processors, Real-time systems
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-45934OAI: oai:DiVA.org:mdh-45934DiVA, id: diva2:1369123
Conference
IEEE 45th Annual Conference of the Industrial Electronics Society, IECON2019
Projects
DPAC - Dependable Platforms for Autonomous systems and ControlAvailable from: 2019-11-11 Created: 2019-11-11 Last updated: 2019-12-13Bibliographically approved
In thesis
1. Improving On-Board Data Processing using CPU-GPU Heterogeneous Architectures for Real-Time Systems
Open this publication in new window or tab >>Improving On-Board Data Processing using CPU-GPU Heterogeneous Architectures for Real-Time Systems
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis investigates the efficacy of heterogeneous computing architectures in real-time systems.The goals of the thesis are twofold. First, to investigate various characteristics of the Heterogeneous System Architectures (HSA) compliant reference platforms focusing on computing performance and power consumption. The investigation is focused on the new technologies that could boost on-board data processing systems in satellites and spacecraft. Second, to enhance the usage of the heterogeneous processing units by introducing a technique for static allocation of parallel segments of tasks.

The investigation and experimental evaluation show that our method of GPU allocation for the parallel segments of tasks is more energy efficient compared to any other studied allocation. The investigation is conducted under different types of environments, such as process-level isolated environment, different software stacks, including kernels, and various task set scenarios. The evaluation results indicate that a balanced use of heterogeneous processing units (CPU and GPU) could improve schedulability of task sets up to 90% with the proposed allocation technique.

Abstract [sv]

Denna avhandling undersöker effektiviteten hos heterogena datorarkitekturer i realtidssystem. Målet med avhandlingen är tvåfaldigt. Till att börja med, att undersöka olika egenskaper hos plattformar baserade på Heterogeneous System Architecture, med fokus på datorprestanda och strömförbrukning. Undersökningen är inriktad på tekniker som kan öka datorbehandlingssystemen ombord i satelliter och rymdskepp. För det andra förbättra användningen av heterogena arkitekturer genom att införa en teknik för statisk allokering av parallella programsegment.

Undersökningen och den experimentella utvärderingen visar att vår metod för effektiv användning av GPU-allokering för parallella programsegment är den mest energieffektiva jämfört med någon annan studerad allokering. Undersökningarna har genomförts i olika typer av miljöer, såsom processisolerad miljö, olika mjukvarustackar, inklusive kernel, och olika uppsättningsscenarier. Utvärderingsresultaten indikerar dessutom att en balanserad användning av heterogena beräkningsenheter (CPU och GPU) kan förbättra schemaläggningen för vissa program upp till 90% jämfört med de tidigare föreslagna allokeringsteknikerna.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 286
Keywords
on-board data processing, CPU-GPU, heterogeneous architectures, real-time systems
National Category
Engineering and Technology Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-45940 (URN)978-91-7485-450-3 (ISBN)
Presentation
2019-12-18, Kappa, Mälardalens högskola, Västerås, 09:15 (English)
Opponent
Supervisors
Projects
DPAC - Dependable Platforms for Autonomous systems and Control
Available from: 2019-11-11 Created: 2019-11-11 Last updated: 2019-11-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Tsog, NandinbaatarBecker, MatthiasBruhn, FredrikBehnam, MorisNolin, Mikael

Search in DiVA

By author/editor
Tsog, NandinbaatarBecker, MatthiasBruhn, FredrikBehnam, MorisNolin, Mikael
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf