mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Eliciting correlations between components selection decision cases in software architecting
Mälardalens högskola, Akademin för innovation, design och teknik.
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

A key factor of software architecting is the decision-making process. All phases of software development contain some kind of decision-making activities. However, the software architecture decision process is the most challenging part. To support the decision-making process, a research project named ORION provided a knowledge repository that contains a collection of decision cases. To utilize the collected data in an efficient way, eliciting correlations between decision cases needs to be automated. 

The objective of this thesis is to select appropriate method(s) for automatically detecting correlations between decision cases. To do this, an experiment was conducted using a dataset of collected decision cases that are based on a taxonomy called GRADE. The dataset is stored in the Neo4j graph database. The Neo4j platform provides a library of graph algorithms which allow to analyse a number of relationships between connected data. In this experiment, five Similarity algorithms are used to find correlated decisions, then the algorithms are analysed to determine whether the they would help improve decision-making. 

From the results, it was concluded that three of the algorithms can be used as a source of support for decision-making processes, while the other two need further analyses to determine if they provide any support. 

sted, utgiver, år, opplag, sider
2019.
Emneord [en]
Decision Support, Software Architectures, Similarity Algorithms, Neo4j
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-45248OAI: oai:DiVA.org:mdh-45248DiVA, id: diva2:1352603
Fag / kurs
Computer Science
Veileder
Examiner
Tilgjengelig fra: 2019-09-26 Laget: 2019-09-19 Sist oppdatert: 2019-09-26bibliografisk kontrollert

Open Access i DiVA

fulltext(1907 kB)11 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1907 kBChecksum SHA-512
59455b7f3d26a71138f125ee62a32bbac4eebfa1104a1cc1442fe04473650d5d3e423e61acac360f43992042640a76407e94f10dd4d4ad744df75f1db09dfc7f
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 11 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 67 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf