mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating Systolic Blood Pressure Using Convolutional Neural Networks
Auckland University of Technology, Auckland, New Zealand.
Auckland University of Technology, Auckland, New Zealand.
Auckland University of Technology, Auckland, New Zealand.
Otago Polytechnic, Auckland, New Zealand.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Studies in Health Technology and Informatics, ISSN 0926-9630, E-ISSN 1879-8365, Vol. 261, s. 143-149Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Continuous blood pressure (BP) monitoring can produce a significant amount of digital data, which increases the chance of early diagnosis and improve the rate of survival for people diagnosed with hypertension and Cardiovascular diseases (CVDs). However, mining and processing this vast amount of data are challenging. This research is aimed to address this challenge by proposing a deep learning technique, convolutional neural network (CNN), to estimate the systolic blood pressure (SBP) using electrocardiogram (ECG) and photoplethysmography (PPG) signals. Two different methods are investigated and compared in this research. In the first method, continuous wavelet transform (CWT) and CNN have been employed to estimate the SBP. For the second method, we used random sampling within the stochastic gradient descent (SGD) optimization of CNN and the raw ECG and PPG signals for training the network. The Medical Information Mart for Intensive Care (MIMIC III) database is used for both methods, which split to two parts, 70% for training our network and the remaining used for testing the performance of the network. Both methods are capable of learning how to extract relevant features from the signals. Therefore, there is no need for engineered feature extraction compared to previous works. Our experimental results show high accuracy for both CNN-based methods which make them promising and reliable architectures for SBP estimation.

Ort, förlag, år, upplaga, sidor
NLM (Medline) , 2019. Vol. 261, s. 143-149
Nyckelord [en]
Continuous blood pressure, Convolutional neural network, Cuff-less blood pressure, Electrocardiogram, Photoplethysmogram
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-44666Scopus ID: 2-s2.0-85067119352OAI: oai:DiVA.org:mdh-44666DiVA, id: diva2:1331707
Tillgänglig från: 2019-06-27 Skapad: 2019-06-27 Senast uppdaterad: 2019-06-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Personposter BETA

Lindén, Maria

Sök vidare i DiVA

Av författaren/redaktören
Lindén, Maria
Av organisationen
Inbyggda system
I samma tidskrift
Studies in Health Technology and Informatics
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 20 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf