mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Obesity Risk Assessment Model Using Wearable Technology with Personalized Activity, Calorie Expenditure and Health Profile
Auckland University of Technology, New Zealand.
Auckland University of Technology, New Zealand.
Auckland University of Technology, New Zealand.
Auckland University of Technology, New Zealand.
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Studies in Health Technology and Informatics, ISSN 0926-9630, E-ISSN 1879-8365, Vol. 261, s. 91-96Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

There is a worldwide increase in the rate of obesity and its related long-term conditions, emphasizing an immediate need to address this modern-age global epidemic of healthy living. Moreover, healthcare spending on long-term or chronic care conditions such as obesity is increasing to the point that requires effective interventions and advancements to reduce the burden of the healthcare. This research focuses on the early risk assessment of overweight/obesity using wearable technology. We establish an individualised health profile that identifies the level of activity and current health status of an individual using real-time activity and vital signs. We developed an algorithm to assess the risk of obesity using the individual's current activity and calorie expenditure. The algorithm was deployed on a smartphone application to collect wearable device data, and user reported data. Based on the collected data, the proposed application assesses the risk of obesity/overweight, measures the current activity level and recommends an optimized calorie plan.

Ort, förlag, år, upplaga, sidor
NLM (Medline) , 2019. Vol. 261, s. 91-96
Nyckelord [en]
Activity detection, mHealth, Mobile health, Obesity risk assessment, Wearable technology
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-44664PubMedID: 31156097Scopus ID: 2-s2.0-85067100579OAI: oai:DiVA.org:mdh-44664DiVA, id: diva2:1331670
Tillgänglig från: 2019-06-27 Skapad: 2019-06-27 Senast uppdaterad: 2019-06-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

PubMedScopus

Personposter BETA

Lindén, Maria

Sök vidare i DiVA

Av författaren/redaktören
Lindén, Maria
Av organisationen
Inbyggda system
I samma tidskrift
Studies in Health Technology and Informatics
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetricpoäng

pubmed
urn-nbn
Totalt: 10 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf