mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of transcritical CO 2 heat pump system integrated with mechanical subcooling by utilizing energy, exergy and economic methodologies for residential heating
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China.
Vise andre og tillknytning
2019 (engelsk)Inngår i: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 192, s. 202-220Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

A transcritical CO 2 heat pump (HP) system for residential space heating integrated with direct dedicated mechanical subcooling (DMS) is proposed, and mathematical models are developed to study the annual energetic and economic performances considering the influence of frosting. The operation characteristics by adopting different heating terminals used in five typical cities are also assessed. The results show a maximum coefficient of performance (COP) is achieved at the optimum discharge pressure and subcooling degree. The COP is promoted by 24.4% and the discharge pressure is decreased by 2.093 MPa at the ambient temperature of −10 °C and water supply/return temperature of 45/40 °C. The seasonal performance factor (SPF) is enhanced more noticeably for severe cold region. For the case of Harbin using floor-coil radiator (FCR) or normal fan-coil unit (N-FCU) as heating terminal, SPF is improved by 32.0%. The highest SPF is achieved when small temperature difference fan-coil unit (STD-FCU) is employed. The exergy efficiency can also be apparently improved, especially for the cities located in severe cold region and using FCR or N-FCU as heating terminal due to the reduction in throttling loss of CO 2 system. The purchased equipment cost and electricity cost of the CO 2 HP with DMS are both lower than those of traditional CO 2 heat pump system. The CO 2 HP DMS system using STD-FCU as heating terminal shows superior economical efficiency to traditional system, with levelized annual total cost reduced by 7.51–15.27%. 

sted, utgiver, år, opplag, sider
Elsevier Ltd , 2019. Vol. 192, s. 202-220
Emneord [en]
Annual energy efficiency, Dedicated mechanical subcooling, Economic evaluation, Heat pump, Residential heating, Transcritical CO 2
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-43304DOI: 10.1016/j.enconman.2019.03.094ISI: 000471083500017Scopus ID: 2-s2.0-85064445209OAI: oai:DiVA.org:mdh-43304DiVA, id: diva2:1314597
Tilgjengelig fra: 2019-05-09 Laget: 2019-05-09 Sist oppdatert: 2019-06-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Li, Hailong

Søk i DiVA

Av forfatter/redaktør
Li, Hailong
Av organisasjonen
I samme tidsskrift
Energy Conversion and Management

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 24 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf