mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Clustering heat users based on consumption data
College of Electronics and Information Engineering, Tongji University, Shanghai, China.
College of Electronics and Information Engineering, Tongji University, Shanghai, China.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-6279-4446
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-4720-548X
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: Energy Procedia, Elsevier Ltd , 2019, Vol. 158, s. 3196-3201Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In today's district heating (DH) energy market, it is common to use user functional categories in price models to determine the heat price. However, users in the same category do not necessarily have the same energy consumption patterns, which potentially leads to unfair prices and many other practical issues. Taking into account heat usage characteristics, this work proposes two data-driven methods to cluster DH users to identify similar usage patterns, using practical energy consumption data. Efforts are focused on extracting representative features of users from their daily usage profiles and duration curves, respectively. Employing clustering based on these features, the resulting typical usage patterns and user category distributions are discussed. Our results can serve as potential inputs for future energy price models, demand-side management, and load reshaping strategies.

Ort, förlag, år, upplaga, sidor
Elsevier Ltd , 2019. Vol. 158, s. 3196-3201
Nyckelord [en]
Consumption profile, District heating, Duration curve, User clustering, Electric utilities, Data-driven methods, Energy markets, Future energies, Practical energies, Practical issues, Energy utilization
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-43194DOI: 10.1016/j.egypro.2019.01.1010ISI: 000471031703087Scopus ID: 2-s2.0-85063916560OAI: oai:DiVA.org:mdh-43194DiVA, id: diva2:1306905
Konferens
10th International Conference on Applied Energy, ICAE 2018, 22 August 2018 through 25 August 2018
Tillgänglig från: 2019-04-25 Skapad: 2019-04-25 Senast uppdaterad: 2019-08-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Li, HailongSong, Jingjing

Sök vidare i DiVA

Av författaren/redaktören
Li, HailongSong, Jingjing
Av organisationen
Framtidens energi
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 11 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf