https://www.mdu.se/

mdu.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Architecture Modelling and Formal Analysis of Intelligent Multi-Agent Systems
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Formal Modelling and Analysis of Embedded Systems)
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Formal Modelling and Analysis of Embedded Systems)
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Formal Modelling and Analysis of Embedded Systems)ORCID iD: 0000-0002-7663-5497
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Formal Modelling and Analysis of Embedded Systems)ORCID iD: 0000-0003-2870-2680
2019 (English)In: Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering - Volume 1: ENASE, 2019, p. 114-126Conference paper, Published paper (Refereed)
Abstract [en]

Modern cyber-physical systems usually assume a certain degree of autonomy. Such systems, like Ambient Assisted Living systems aimed at assisting elderly people in their daily life, often need to perform safety-critical functions, for instance, fall detection, health deviation monitoring, communication to caregivers, etc. In many cases, the system users have distributed locations, as well as different needs that need to be serviced intelligently at the same time. These features call for intelligent, adaptive, scalable and fault-tolerant system design solutions, which are well embodied by multi-agent architectures. Analyzing such complex architectures at design phase, to verify if an abstraction of the system satisfies all the critical requirements is beneficial. In this paper, we start from an agent-based architecture for ambient assisted living systems, inspired from the literature, which we model in the popular Architecture Description and Design Language. Since the latter lacks the ability to specify autonomous agent behaviours, which are often intelligent, non-deterministic or probabilistic, we extend the architectural language with a sub-language called Agent Annex, which we formally encode as a Stochastic Transition System. This contribution allows us to specify behaviours of agents involved in agent-based architectures of cyber-physical systems, which we show how to exhaustively verify with the state-of-art model checker PRISM. As a final step, we apply our framework on a distributed ambient assisted living system, whose critical requirements we verify with PRISM.

Place, publisher, year, edition, pages
2019. p. 114-126
Keywords [en]
Ambient Assisted Living, Architecture Analsysis And Design Language, Cyber-physical Systems, Model Checking, Multi-Agent Systems, PRISM, Assisted living, Autonomous agents, Biological systems, Computer architecture, Cyber Physical System, Embedded systems, Intelligent agents, Prisms, Safety engineering, Stochastic systems, Systems analysis, Agent based architectures, Architectural languages, Design languages, Intelligent multi agent systems, Multiagent architecture, Safety-critical functions, Stochastic transition systems, Multi agent systems
National Category
Embedded Systems
Identifiers
URN: urn:nbn:se:mdh:diva-42921DOI: 10.5220/0007730201140126ISI: 000570412000010Scopus ID: 2-s2.0-85067426971ISBN: 9789897583759 (print)OAI: oai:DiVA.org:mdh-42921DiVA, id: diva2:1296286
Conference
14th International Conference on Evaluation of Novel Approaches to Software Engineering, Heraklion, Crete, Greece
Note

Conference code: 148432; Export Date: 11 July 2019; Conference Paper

Available from: 2019-03-14 Created: 2019-03-14 Last updated: 2021-09-18Bibliographically approved
In thesis
1. Formally Assured Intelligent Systems for Enhanced Ambient Assisted Living Support
Open this publication in new window or tab >>Formally Assured Intelligent Systems for Enhanced Ambient Assisted Living Support
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Ambient Assisted Living (AAL) solutions are aimed to assist the elderly in their independent and safe living. During the last decade, the AAL field has witnessed a significant development due to advancements in Information and Communication Technologies, Ubiquitous Computing and Internet of Things. However, a closer look at the existing AAL solutions shows that these improvements are used mostly to deliver one or a few functions mainly of the same type (e.g. health monitoring functions). There are comparatively fewer initiatives that integrate different kinds of AAL functionalities, such as fall detection, reminders, fire alarms, etc., besides health monitoring, into a common framework, with intelligent decision-making that can thereby offer enhanced reasoning by combining multiple events. 

 

To address this shortage, in this thesis, we propose two different categories of AAL architecture frameworks onto which different functionalities, chosen based on user preferences, can be integrated. One of them follows a centralized approach, using an intelligent Decision Support System (DSS), and the other, follows a truly distributed approach, involving multiple intelligent agents. The centralized architecture is our initial choice, due to its ease of development by combining multiple functionalities with a centralized DSS that can assess the dependency between multiple events in real time. While easy to develop, our centralized solution suffers from the well-known single point of failure, which we remove by adding a redundant DSS. Nevertheless, the scalability, flexibility, multiple user accesses, and potential self-healing capability of the centralized solution are hard to achieve, therefore we also propose a distributed, agent-based architecture as a second solution, to provide the community with two different AAL solutions that can be applied depending on needs and available resources. Both solutions are to be used in safety-critical applications, therefore their design-time assurance, that is, providing a guarantee that they meet functional requirements and deliver the needed quality-of-service, is beneficial. 

 

Our first solution is a generic architecture that follows the design of many commercial AAL solutions with sensors, a data collector, DSS, security and privacy, database (DB) systems, user interfaces (UI), and cloud computing support. We represent this architecture in the Architecture Analysis and Design Language (AADL) via a set of component patterns that we propose. The advantage of using patterns is that they are easily re-usable when building specific AAL architectures. Our patterns describe the behavior of the components in the Behavioral Annex of AADL, and the error behavior in AADL's Error Annex. We also show various instantiations of our generic model that can be developed based on user requirements. To formally assure these solutions against functional, timing and reliability requirements, we show how we can employ exhaustive model checking using the state-of-art model checker, UPPAAL, and also statistical model-checking techniques with UPPAAL SMC, an extension of the UPPAAL model checker for stochastic systems, which can be employed in cases when exhaustive verification does not scale. The second proposed architecture is an agent-based architecture for AAL systems, where agents are intelligent entities capable of communicating with each other in order to decide on an action to take. Therefore, the decision support is now distributed among agents and can be used by multiple users distributed across multiple locations. Due to the fact that this solution requires describing agents and their interaction, the existing core AADL does not suffice as an architectural framework. Hence, we propose an extension to the core AADL language - The Agent Annex, with formal semantics as Stochastic Transition Systems, which allows us to specify probabilistic, non-deterministic and real-time AAL system behaviors. In order to formally assure our multi-agent system, we employ the state-of-art probabilistic model checker PRISM, which allows us to perform probabilistic yet exhaustive verification.

 

As a final contribution, we also present a small-scale validation of an architecture of the first category, with end users from three countries (Romania, Poland, Denmark). This work has been carried out with partners from the mentioned countries. 

 

Our work in this thesis paves the way towards the development of user-centered, intelligent ambient assisted living solutions with ensured quality of service.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 278
National Category
Embedded Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-42922 (URN)978-91-7485-425-1 (ISBN)
Presentation
2019-04-15, Milos, Mälardalens högskola, Västerås, 13:30 (English)
Opponent
Supervisors
Available from: 2019-03-19 Created: 2019-03-14 Last updated: 2019-04-01Bibliographically approved
2. Modeling and Formal Analysis of e-Health Systems
Open this publication in new window or tab >>Modeling and Formal Analysis of e-Health Systems
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

With the healthcare practice being increasingly dependent on digital processes and electronic communication, there is a need to support a variety of e-Health applications of different requirements, with respect to connectivity, low latency, and high reliability. The focus of this thesis is on providing formal assurance to systems supporting e-Health applications. Among such systems, this thesis considers: a) Ambient Assisted Living (AAL) Systems, aimed to assist the elderly in their independent and safe living within their homes, and b) healthcare assistance systems that include home, hospital, or emergency e-Health applications, where simultaneous access and communication is critical.

In order to provide formal assurance, one needs to  capture both the structure and behavior of the targeted e-Health systems within models that can be formalized and analyzed by formal methods. Due to only few existing initiatives in the AAL domain that integrate common AAL functionalities such as pulse monitoring, fall detection, as well as fire detection, and remote communication with care-givers, within a generic framework, in this thesis, we propose, as a first contribution, two different categories of AAL architecture frameworks onto which different functionalities, chosen based on user preferences, can be integrated. The first solution follows a centralized approach, using an intelligent Decision Support System, and the second employs a distributed architectural approach, involving multiple intelligent agents. Although centralized solutions are easy to develop, scalability, flexibility, multiple user accesses and potential self-healing are easier to achieve with the distributed, agent-based architecture.  To formally assure these solutions against functional, timing and reliability requirements, as a second contribution, we model the architectures in one of the architecture description languages, namely Architecture Analysis and Design Language, to which we assign semantics in terms of various flavors of transition systems. Consequently, we employ corresponding model checking techniques, such as exhaustive model checking in UPPAAL, statistical model checking in UPPAAL SMC, and probabilistic Model Checking in PRISM, to provide the necessary design-time assurance. 

Our AAL formal frameworks abstract away the communication media and assume communication protocols with fixed delays only. Moreover, their scope is limited to home-based assistance with with no simultaneous/parallel user access. 

Hence, we model next the communication media and expand our scope to target generic e-Health systems supporting home, hospital, and emergency use cases. For such systems, networking capabilities with real-time and reliable communication schemes are essential for service-user connectivity, and resource sharing.

One communication scheme employed in such e-Health applications is the fifth generation of cellular wireless technology, namely, 5G, which offers the possibility of creating network slices that provide independent logical networks, to serve a variety of applications characterized by certain quality-of-service requirements. The network slicing is enabled by the underlying 5G service orchestration capabilities that deal with virtual network function placement, implicit resource assignment, and traffic routing.In this work, we study in detail the service orchestration problem in 5G. As the third contribution, we propose a UML-based framework consisting of: (a) a UML5G Service Orchestration Profile (UML5G-SO) that facilitates modeling service orchestration and network slicing for such 5G-based systems, and (b) associated analysis techniques that back the profile, namely logic-based analysis using the USE tool, and exhaustive model checking via UPPAAL. 

As a final contribution, we propose a tool that integrates UML5G-SO models with UPPAAL, and apply our framework on real use cases of e-Health systems, to provide some experimental evaluation by which we gather useful insights with respect to the framework's practical strengths and weaknesses.

Our work in this thesis paves the way towards the development of healthcare assistance systems with assured quality of service.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2021
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 341
National Category
Engineering and Technology Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-55742 (URN)978-91-7485-520-3 (ISBN)
Public defence
2021-11-05, Gamma, Mälardalens högskola, Västerås, 13:30 (English)
Opponent
Supervisors
Available from: 2021-09-20 Created: 2021-09-18 Last updated: 2021-10-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Kunnappilly, AshalathaCai, SiminMarinescu, RalucaSeceleanu, Cristina
By organisation
Embedded Systems
Embedded Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 423 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf