https://www.mdu.se/

mdu.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Model-Checking-Based Framework For Analyzing Ambient Assisted Living Solutions
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Formal Modelling and Analysis of Embedded Systems)
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Formal Modelling and Analysis of Embedded Systems)ORCID iD: 0000-0002-7663-5497
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Formal Modelling and Analysis of Embedded Systems)ORCID iD: 0000-0003-2870-2680
2019 (English)Report (Refereed)
Place, publisher, year, edition, pages
Sweden, 2019.
National Category
Embedded Systems
Identifiers
URN: urn:nbn:se:mdh:diva-42920OAI: oai:DiVA.org:mdh-42920DiVA, id: diva2:1296282
Note

Since modern ambient assisted living solutions integrate a multitude of assisted-living functionalities within a common design framework, some are safety-critical, it is desirable that these systems are analyzed already at their design stage to detect possible errors. To achieve this, one needs suitable architectures that support the seamless design of the integrated assisted-living functions, as well as capabilities for the formal modeling and analysis of the architecture. In this paper, we attempt to address this need, by proposing a generic integrated ambient assisted living system architecture, consisting of sensors, data-collector, local and cloud processing schemes, and an intelligent decision support system, which can be easily extended to suite specific architecture categories. Our solution is customizable, therefore, we show three instantiations of the generic model, as simple, intermediate and complex configuration, respectively, and show how to analyze the first and third categories by model checking. Our approach starts by specifying the architecture, using an architecture description language, in our case, the Architecture Analysis and Design Language that can also account for the probabilistic behavior of such systems. To enable formal analysis, we describe the semantics of the simple and complex categories as stochastic timed automata. The former we model check exhaustively with UPPAAL, whereas for the latter we employ statistical model checking using UPPAAL SMC, the statistical extension of UPPAAL, for scalability reasons.

Available from: 2019-03-14 Created: 2019-03-14 Last updated: 2019-06-11Bibliographically approved
In thesis
1. Formally Assured Intelligent Systems for Enhanced Ambient Assisted Living Support
Open this publication in new window or tab >>Formally Assured Intelligent Systems for Enhanced Ambient Assisted Living Support
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Ambient Assisted Living (AAL) solutions are aimed to assist the elderly in their independent and safe living. During the last decade, the AAL field has witnessed a significant development due to advancements in Information and Communication Technologies, Ubiquitous Computing and Internet of Things. However, a closer look at the existing AAL solutions shows that these improvements are used mostly to deliver one or a few functions mainly of the same type (e.g. health monitoring functions). There are comparatively fewer initiatives that integrate different kinds of AAL functionalities, such as fall detection, reminders, fire alarms, etc., besides health monitoring, into a common framework, with intelligent decision-making that can thereby offer enhanced reasoning by combining multiple events. 

 

To address this shortage, in this thesis, we propose two different categories of AAL architecture frameworks onto which different functionalities, chosen based on user preferences, can be integrated. One of them follows a centralized approach, using an intelligent Decision Support System (DSS), and the other, follows a truly distributed approach, involving multiple intelligent agents. The centralized architecture is our initial choice, due to its ease of development by combining multiple functionalities with a centralized DSS that can assess the dependency between multiple events in real time. While easy to develop, our centralized solution suffers from the well-known single point of failure, which we remove by adding a redundant DSS. Nevertheless, the scalability, flexibility, multiple user accesses, and potential self-healing capability of the centralized solution are hard to achieve, therefore we also propose a distributed, agent-based architecture as a second solution, to provide the community with two different AAL solutions that can be applied depending on needs and available resources. Both solutions are to be used in safety-critical applications, therefore their design-time assurance, that is, providing a guarantee that they meet functional requirements and deliver the needed quality-of-service, is beneficial. 

 

Our first solution is a generic architecture that follows the design of many commercial AAL solutions with sensors, a data collector, DSS, security and privacy, database (DB) systems, user interfaces (UI), and cloud computing support. We represent this architecture in the Architecture Analysis and Design Language (AADL) via a set of component patterns that we propose. The advantage of using patterns is that they are easily re-usable when building specific AAL architectures. Our patterns describe the behavior of the components in the Behavioral Annex of AADL, and the error behavior in AADL's Error Annex. We also show various instantiations of our generic model that can be developed based on user requirements. To formally assure these solutions against functional, timing and reliability requirements, we show how we can employ exhaustive model checking using the state-of-art model checker, UPPAAL, and also statistical model-checking techniques with UPPAAL SMC, an extension of the UPPAAL model checker for stochastic systems, which can be employed in cases when exhaustive verification does not scale. The second proposed architecture is an agent-based architecture for AAL systems, where agents are intelligent entities capable of communicating with each other in order to decide on an action to take. Therefore, the decision support is now distributed among agents and can be used by multiple users distributed across multiple locations. Due to the fact that this solution requires describing agents and their interaction, the existing core AADL does not suffice as an architectural framework. Hence, we propose an extension to the core AADL language - The Agent Annex, with formal semantics as Stochastic Transition Systems, which allows us to specify probabilistic, non-deterministic and real-time AAL system behaviors. In order to formally assure our multi-agent system, we employ the state-of-art probabilistic model checker PRISM, which allows us to perform probabilistic yet exhaustive verification.

 

As a final contribution, we also present a small-scale validation of an architecture of the first category, with end users from three countries (Romania, Poland, Denmark). This work has been carried out with partners from the mentioned countries. 

 

Our work in this thesis paves the way towards the development of user-centered, intelligent ambient assisted living solutions with ensured quality of service.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 278
National Category
Embedded Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-42922 (URN)978-91-7485-425-1 (ISBN)
Presentation
2019-04-15, Milos, Mälardalens högskola, Västerås, 13:30 (English)
Opponent
Supervisors
Available from: 2019-03-19 Created: 2019-03-14 Last updated: 2019-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Kunnappilly, AshalathaMarinescu, RalucaSeceleanu, Cristina

Search in DiVA

By author/editor
Kunnappilly, AshalathaMarinescu, RalucaSeceleanu, Cristina
By organisation
Embedded Systems
Embedded Systems

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 118 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf