mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Random fields related to the symmetry classes of second-order symmetric tensors
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)ORCID-id: 0000-0002-0139-0747
University of Illinois at Urbana-Champaign, Urbana, United States.
2018 (Engelska)Ingår i: Stochastic Processes and Applications: SPAS2017, Västerås and Stockholm, Sweden, October 4-6, 2017 / [ed] Sergei Silvestrov, Anatoliy Malyarenko, Milica Rančić, Springer, 2018, Vol. 271, s. 173-185Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

Under the change of basis in the three-dimensional space by means of an orthogonal matrix g, a matrix A of a linear operator is transformed as A → gAg-1 Mathematically, the stationary subgroup of a symmetric matrix under the above action can be either (Formula Presented), when all three eigenvalues of A are different, or (Formula Presented), when two of them are equal, or O(3), when all three eigenvalues are equal. Physically, one typical application relates to dependent quantities like a second-order symmetric stress (or strain) tensor. Another physical setting is that of dependent fields, such as conductivity with such three cases is the conductivity (or, similarly, permittivity, or anti-plane elasticity) second-rank tensor, which can be either orthotropic, transversely isotropic, or isotropic. For each of the above symmetry classes, we consider a homogeneous random field taking values in the fixed point set of the class that is invariant with respect to the natural representation of a certain closed subgroup of the orthogonal group. Such fields may model stochastic heat conduction, electric permittivity, etc. We find the spectral expansions of the introduced random fields.

Ort, förlag, år, upplaga, sidor
Springer, 2018. Vol. 271, s. 173-185
Serie
Springer Proceedings in Mathematics and Statistics, ISSN 2194-1009 ; 271
Nyckelord [en]
Random field, Spectral expansion, Symmetry class, Eigenvalues and eigenfunctions, Expansion, Heat conduction, Mathematical operators, Permittivity, Random processes, Stochastic models, Stochastic systems, Tensors, Electric permittivities, Natural representation, Random fields, Spectral expansions, Three dimensional space, Transversely isotropic, Typical application, Matrix algebra
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-41836DOI: 10.1007/978-3-030-02825-1_10Scopus ID: 2-s2.0-85058569471ISBN: 9783030028244 (tryckt)OAI: oai:DiVA.org:mdh-41836DiVA, id: diva2:1274026
Konferens
International Conference on “Stochastic Processes and Algebraic Structures – From Theory Towards Applications”, SPAS 2017; Västerås and Stockholm; Sweden; 4 October 2017 through 6 October 2017; Code 221789
Tillgänglig från: 2018-12-27 Skapad: 2018-12-27 Senast uppdaterad: 2018-12-31Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttps://www.springer.com/gp/book/9783030028244

Personposter BETA

Malyarenko, Anatoliy

Sök vidare i DiVA

Av författaren/redaktören
Malyarenko, Anatoliy
Av organisationen
Utbildningsvetenskap och Matematik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 15 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf