mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulation and validation of flow and heat transfer in an infinite mini-channel using Smoothed Particle Hydrodynamics
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. (FEC, Track 3, Modeling and Simulation)ORCID-id: 0000-0002-9490-9703
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0001-8849-7661
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-8466-356X
2018 (Engelska)Ingår i: Energy Procedia, Elsevier, 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Fluid flow and heat transfer in small channels have a wide range of engineering and medical applications. It has always been a topic of numerous theoretical, numerical and experimental studies. Several numerical methods have been used to simulate such flows. The most common approaches are the finite volume method (FVM) and the direct numerical simulation (DNS), which are numerically expensive to solve cases involving complex engineering problems. The main purpose of this work is to investigate the usability of the mesh-free particle based Smoothed Particle Hydrodynamics (SPH) method to simulate convective heat transfer. To validate our approach, as a starting point, we choose to solve a simple well-established problem which is the laminar flow and heat transfer through an infinitely long mini-channel. The solution obtained from SPH method has been compared to the solution from FVM method and analytical solution with good accuracy. The results presented in this paper show that SPH is capable to solve laminar forced convection heat transfer, however, turbulent flow cases need to be considered to be able to utilize the SPH method for engineering thermal applications.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018.
Nyckelord [en]
Poiseuille flow, mini-channel, CFD analysis, Heat transfer, SPH, FVM
Nationell ämneskategori
Energiteknik Strömningsmekanik och akustik
Forskningsämne
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-41275DOI: 10.1016/j.egypro.2019.01.533ISI: 000471031706043Scopus ID: 2-s2.0-85063895098OAI: oai:DiVA.org:mdh-41275DiVA, id: diva2:1260299
Konferens
10th International Conference on Applied Energy (ICAE2018), 22-25 August 2018, Hong Kong, China
Projekt
MR-OMDOTillgänglig från: 2018-11-01 Skapad: 2018-11-01 Senast uppdaterad: 2019-10-14Bibliografiskt granskad
Ingår i avhandling
1. Fluid Flow and Heat Transfer Simulations for Complex Industrial Applications: From Reynolds Averaged Navier-Stokes towards Smoothed Particle Hydrodynamics
Öppna denna publikation i ny flik eller fönster >>Fluid Flow and Heat Transfer Simulations for Complex Industrial Applications: From Reynolds Averaged Navier-Stokes towards Smoothed Particle Hydrodynamics
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Optimal process control can significantly enhance energy efficiency of heating and cooling processes in many industries. Process control systems typically rely on measurements and so called grey or black box models that are based mainly on empirical correlations, in which the transient characteristics and their influence on the control parameters are often ignored. A robust and reliable numerical technique, to solve fluid flow and heat transfer problems, such as computational fluid dynamics (CFD), which is capable of providing a detailed understanding of the multiple underlying physical phenomena, is a necessity for optimization, decision support and diagnostics of complex industrial systems. The thesis focuses on performing high-fidelity CFD simulations of a wide range of industrial applications to highlight and understand the complex nonlinear coupling between the fluid flow and heat transfer. The industrial applications studied in this thesis include cooling and heating processes in a hot rolling steel plant, electric motors, heat exchangers and sloshing inside a ship carrying liquefied natural gas. The goal is to identify the difficulties and challenges to be met when simulating these applications using different CFD tools and methods and to discuss the strengths and limitations of the different tools.

The mesh-based finite volume CFD solver ANSYS Fluent is employed to acquire detailed and accurate solutions of each application and to highlight challenges and limitations. The limitations of conventional mesh-based CFD tools are exposed when attempting to resolve the multiple space and time scales involved in large industrial processes. Therefore, a mesh-free particle method, smoothed particle hydrodynamics (SPH) is identified in this thesis as an alternative to overcome some of the observed limitations of the mesh-based solvers. SPH is introduced to simulate some of the selected cases to understand the challenges and highlight the limitations. The thesis also contributes to the development of SPH by implementing the energy equation into an open-source SPH flow solver to solve thermal problems. The thesis highlights the current state of different CFD approaches towards complex industrial applications and discusses the future development possibilities.

The overall observations, based on the industrial problems addressed in this thesis, can serve as decision tool for industries to select an appropriate numerical method or tool for solving problems within the presented context. The analysis and discussions also serve as a basis for further development and research to shed light on the use of CFD simulations for improved process control, optimization and diagnostics.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2018
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 282
Nyckelord
Computational Fluid Dynamics, Heat transfer, Industrial applications, Reynolds Averaged Navier-Stokes, Smoothed Particle Hydrodynamics, Energy enginnering, Thermal Management, Process control
Nationell ämneskategori
Energiteknik
Forskningsämne
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-41277 (URN)978-91-7485-415-2 (ISBN)
Disputation
2018-12-14, Delta, Mälardalens högskola, Västerås, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-11-02 Skapad: 2018-11-01 Senast uppdaterad: 2018-11-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Bel Fdhila, RebeiKyprianidis, Konstantinos

Sök vidare i DiVA

Av författaren/redaktören
Hosain, Md LokmanBel Fdhila, RebeiKyprianidis, Konstantinos
Av organisationen
Framtidens energi
EnergiteknikStrömningsmekanik och akustik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 73 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf