mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fleet monitoring and diagnostics framework based on digital twin of aero-engines
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0001-6101-2863
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-8466-356X
2018 (engelsk)Inngår i: Proceedings of the ASME Turbo Expo, American Society of Mechanical Engineers (ASME) , 2018, Vol. 6Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Monitoring aircraft performance in a fleet is fundamental to ensure optimal operation and promptly detect anomalies that can increase fuel consumption or compromise flight safety. Accurate failure detection and life prediction methods also result in reduced maintenance costs. The major challenges in fleet monitoring are the great amount of collected data that need to be processed and the variability between engines of the fleet, which requires adaptive models. In this paper, a framework for monitoring, diagnostics, and health management of a fleet of aircrafts is proposed. The framework consists of a multi-level approach: starting from thresholds exceedance monitoring, problematic engines are isolated, on which a fault detection system is then applied. Different methods for fault isolation, identification, and quantification are presented and compared, and the related challenges and opportunities are discussed. This conceptual strategy is tested on fleet data generated through a performance model of a turbofan engine, considering engine-to-engine and flight-to-flight variations and uncertainties in sensor measurements. Limitations of physics-based methods and machine learning techniques are investigated and the needs for fleet diagnostics are highlighted. 

sted, utgiver, år, opplag, sider
American Society of Mechanical Engineers (ASME) , 2018. Vol. 6
Emneord [en]
Aircraft engines, Engines, Fault detection, Learning systems, Turbofan engines, Turbomachinery, Uncertainty analysis, Aircraft performance, Fault detection systems, Life prediction methods, Machine learning techniques, Monitoring and diagnostics, Physics-based methods, Reduced maintenance costs, Sensor measurements, Fleet operations
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-41129DOI: 10.1115/GT2018-76414ISI: 000456908700036Scopus ID: 2-s2.0-85053863979ISBN: 9780791851128 (tryckt)OAI: oai:DiVA.org:mdh-41129DiVA, id: diva2:1254117
Konferanse
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018, 11 June 2018 through 15 June 2018
Tilgjengelig fra: 2018-10-08 Laget: 2018-10-08 Sist oppdatert: 2019-10-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Zaccaria, ValentinaAslanidou, IoannaKyprianidis, Konstantinos

Søk i DiVA

Av forfatter/redaktør
Zaccaria, ValentinaStenfelt, MikaelAslanidou, IoannaKyprianidis, Konstantinos
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 38 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf