mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robust Bayesian Linear Regression with Application to an Analysis of the CODATA Values for the Planck Constant
Physikalisch-Technische Bundesanstalt, Germany.
Physikalisch-Technische Bundesanstalt, Germany.
Physikalisch-Technische Bundesanstalt, Germany.
2017 (Engelska)Ingår i: Metrologia, ISSN 0026-1394, E-ISSN 1681-7575, Vol. 55, nr 1, s. 20-28Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Weighted least-squares estimation is commonly applied in metrology to fit models to measurements that are accompanied with quoted uncertainties. The weights are chosen in dependence on the quoted uncertainties. However, when data and model are inconsistent in view of the quoted uncertainties, this procedure does not yield adequate results.

When it can be assumed that all uncertainties ought to be rescaled by a common factor, weighted least-squares estimation may still be used, provided that a simple correction of the uncertainty obtained for the estimated model is applied. We show that these uncertainties and credible intervals are robust, as they do not rely on the assumption of a Gaussian distribution of the data. Hence, common software for weighted least-squares estimation may still safely be employed in such a case, followed by a simple modification of the uncertainties obtained by that software. We also provide means of checking the assumptions of such an approach.

The Bayesian regression procedure is applied to analyze the CODATA values for the Planck constant published over the past decades in terms of three different models: a constant model, a straight line model and a spline model. Our results indicate that the CODATA values may not have yet stabilized

Ort, förlag, år, upplaga, sidor
2017. Vol. 55, nr 1, s. 20-28
Nyckelord [en]
Bayesian linear regression
Nationell ämneskategori
Sannolikhetsteori och statistik Annan fysik
Identifikatorer
URN: urn:nbn:se:mdh:diva-41065DOI: 10.1088/1681-7575/aa98aaOAI: oai:DiVA.org:mdh-41065DiVA, id: diva2:1252011
Tillgänglig från: 2018-09-28 Skapad: 2018-09-28 Senast uppdaterad: 2018-10-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Bodnar, Olha

Sök vidare i DiVA

Av författaren/redaktören
Bodnar, Olha
I samma tidskrift
Metrologia
Sannolikhetsteori och statistikAnnan fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 36 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf