mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Safety-Centric Change Management Framework by Tailoring Agile and V-Model Processes
University of Salford, Manchester, UK.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-9347-1949
2018 (English)In: 36th International System Safety Conference ISSC 2018, 2018Conference paper, Published paper (Refereed)
Abstract [en]

Safety critical systems are evolutionary and subject to preventive, perfective, corrective or adaptive changes during their lifecycle. Changes to any part of those systems can undermine the confidence in safety since changes can refute articulated claims about safety or challenge the supporting evidence on which this confidence relies. Changes to the software components are no exception. In order to maintain the confidence in the safety performance, developers must update their system and its safety case. Agile methodologies are known to embrace changes to software where agilists strive to manage changes, not to prevent them. In this paper, we introduce a novel framework in which we tailor a hybrid process of agile software development and the traditional V-model. The tailored process aims to facilitate the accommodation of non-structural changes to the software parts of safety critical systems. We illustrate our framework in the context of ISO 26262 safety standard.

Place, publisher, year, edition, pages
2018.
Keywords [en]
safety case, contracts, impact analysis, change management, agile software development, agile tailoring, V-model, XP, Kanban
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-40880OAI: oai:DiVA.org:mdh-40880DiVA, id: diva2:1249229
Conference
36th International System Safety Conference ISSC 2018, 13 Aug 2018, Phoenix, AZ, United States
Projects
Future factories in the CloudSafeCOP - Safe Cooperating Cyber-Physical Systems using Wireless Communication
Funder
EU, Horizon 2020, 692529 VinnovaAvailable from: 2018-09-18 Created: 2018-09-18 Last updated: 2019-04-17Bibliographically approved
In thesis
1. Contracts-Based Maintenance of Safety Cases
Open this publication in new window or tab >>Contracts-Based Maintenance of Safety Cases
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Safety critical systems are those systems whose failure could result in loss of life, significant property damage, or damage to the environment. System safety is a major property that shall be adequately assured to avoid any severe outcomes in safety critical systems. Safety assurance should provide justified confidence that all potential risks due to system failures are either eliminated or acceptably mitigated. System developers in many domains (e.g., automotive, avionics, railways) should provide convincing arguments regarding the safe performance of their systems to a national or international regulatory authority and obtain approvals before putting the system into service.  Building 'Safety cases' is a proven technique to argue about and communicate systems' safety and it has become a common practice in many safety critical system domains. System developers use safety cases to articulate claims about how systems meet their safety requirements and objectives, collect and document items of evidence, and construct a safety argument to show how the available items of evidence support the claims.

Safety critical systems are evolutionary and constantly subject to preventive, perfective, corrective or adaptive changes during both the development and operational phases. Changes to any part of those systems can undermine the confidence in safety since changes can refute articulated claims about safety or challenge the supporting evidence on which this confidence relies. Hence, safety cases need to be built as living documents that should always be maintained to justify the safety status of the associated system and evolve as these systems evolve. However, building safety cases are costly since they require a significant amount of time and efforts to define the safety objectives, generate the required evidence and conclude the underlying logic behind the safety case arguments. Safety cases document highly dependent elements such as safety goals, assumptions and evidence. Seemingly minor changes may have a major impact. Changes to a system or its environment can necessitate a costly and painstaking impact analysis for systems and their safety cases. In addition, changes may require system developers to generate completely new items of evidence by repeating the verification activities. Therefore, changes can exacerbate the cost of producing and maintaining safety cases.  

Safety contracts have been proposed as a means for helping to manage changes. There have been works that discuss the usefulness of contracts for reusability and maintainability. However, there has been little attention on how to derive them and how exactly they can be utilised for system or safety case maintenance.

The main goal of this thesis is to support the change impact analysis as a key factor to enhance the maintainability of safety cases. We focus on utilising safety contracts to achieve this goal. To address this, we study how safety contracts can support essential factors for any useful change management process, such as (1) identifying the impacted  elements  and  those  that  are  not  impacted, (2) minimising the number of impacted  safety  case  elements, and (3) reducing the  work  needed  to  make  the  impacted  safety  case  elements valid again. The preliminary finding of our study reveals that using safety contracts can be promising to develop techniques and processes to facilitate safety case maintenance. The absence of safety case maintenance guidelines from safety standards and the lack of systematic and methodical maintenance techniques have motivated the work of this thesis. Our work is presented through a set of developed and assessed techniques, where these techniques utilise safety contracts to achieve the overall goal by various contributions. We begin by a framework for evaluation of the impact of change on safety critical systems and safety cases. Through this, we identify and highlight the most sensitive system components to a particular change. We propose new ways to associate system design elements with safety case arguments to enable traceability. How to identify and reduce the propagation of change impact is addressed subsequently.  Our research also uses safety contracts to enable through-life safety assurance by monitoring and detecting any potential mismatch between the design safety assumptions and the actual behaviour of the system during its operational phase. More specifically, we use safety contracts to capture thresholds of selected safety requirements and compare them with the runtime related data (i.e., operational data) to continuously assess and evolve the safety arguments.

In summary, our proposed techniques pave the way for cost-effective maintenance of safety cases upon preventive, perfective, corrective or adaptive changes in safety critical systems thus helping better decision support for change impact analysis.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2018
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 280
National Category
Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-41281 (URN)978-91-7485-417-6 (ISBN)
Public defence
2018-12-03, Kappa, Mälardalens högskola, Västerås, 09:30 (English)
Opponent
Supervisors
Projects
SafeCOP - Safe Cooperating Cyber-Physical Systems using Wireless Communication
Funder
EU, Horizon 2020, 692529 Vinnova
Available from: 2018-11-02 Created: 2018-11-02 Last updated: 2019-04-16Bibliographically approved

Open Access in DiVA

fulltext(861 kB)17 downloads
File information
File name FULLTEXT01.pdfFile size 861 kBChecksum SHA-512
0a332c3c62c81e376c6848258b3674d5c9f3a265e6657d3cd86fe8350f51dfdd31f53db89bc0e12410dfd55e55bfc3a8a0dcd320d3a4d7a23ad219b4f9c90bc0
Type fulltextMimetype application/pdf

Other links

https://www.system-safety.org/issc2018/wp-content/uploads/2018/05/ISSC18_Final-1.pdf

Authority records BETA

Jaradat, Omar

Search in DiVA

By author/editor
Jaradat, Omar
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 17 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 138 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf