mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards Distributed k-NN similarity for Scalable Case Retrieval
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-7305-7169
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1212-7637
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-3802-4721
2018 (Engelska)Ingår i: ICCBR 2018: The 26th International Conference on Case-Based Reasoning July, 09th-12th 2018 in Stockholm, Sweden, Workshop Proceedings, 2018, s. 151-160Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In Big data era, the demand of processing large amount of data posing several challenges. One biggest challenge is that it is no longer possible to process the data in a single machine. Similar challenges can be assumed for case-based reasoning (CBR) approach, where the size of a case library is increasing and constructed using heterogenous data sources. To deal with the challenges of big data in CBR, a distributed CBR system can be developed, where case libraries or cases are distributed over clusters. MapReduce programming framework has the facilities of parallel processing massive amount of data through a distributed system. This paper proposes a scalable case-representation and retrieval approach using distributed k-NN similarity. The proposed approach is considered to be developed using MapReduce programming framework, where cases are distributed in many clusters.

Ort, förlag, år, upplaga, sidor
2018. s. 151-160
Nyckelord [en]
Case representation, k-NN similarity, Scalable Case Retrieval, distributed CBR, big data
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-40882OAI: oai:DiVA.org:mdh-40882DiVA, id: diva2:1249199
Konferens
XCBR: First Workshop on Case-Based Reasoning for the Explanation of Intelligent Systems. Workshop at the 26th International Conference on Case-Based Reasoning (ICCBR 2018)
Tillgänglig från: 2018-09-18 Skapad: 2018-09-18 Senast uppdaterad: 2018-09-18Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://iccbr18.com/wp-content/uploads/ICCBR-2018-V3.pdf

Personposter BETA

Barua, ShaibalBegum, ShahinaAhmed, Mobyen Uddin

Sök vidare i DiVA

Av författaren/redaktören
Barua, ShaibalBegum, ShahinaAhmed, Mobyen Uddin
Av organisationen
Inbyggda system
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 52 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf