mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Structural Risk Evaluation of a Deep Neural Network and a Markov Model in Extracting Medical Information from Phonocardiography
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
Department of Biomedical Engineering, Linköping University, Sweden.
2018 (Engelska)Ingår i: Studies in Health Technology and Informatics, ISSN 0926-9630, E-ISSN 1879-8365, Vol. 251, s. 157-160Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a method for exploring structural risk of any artificial intelligence-based method in bioinformatics, the A-Test method. This method provides a way to not only quantitate the structural risk associated with a classification method, but provides a graphical representation to compare the learning capacity of different classification methods. Two different methods, Deep Time Growing Neural Network (DTGNN) and Hidden Markov Model (HMM), are selected as two classification methods for comparison. Time series of heart sound signals are employed as the case study where the classifiers are trained to learn the disease-related changes. Results showed that the DTGNN offers a superior performance both in terms of the capacity and the structural risk. The A-Test method can be especially employed in comparing the learning methods with small data size.

Ort, förlag, år, upplaga, sidor
IOS Press , 2018. Vol. 251, s. 157-160
Nyckelord [en]
A-Test method, deep time growing neural network, heart sounds, intelligent phonocardiography
Nationell ämneskategori
Annan teknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-40266DOI: 10.3233/978-1-61499-880-8-157Scopus ID: 2-s2.0-85049594861ISBN: 9781614998792 (tryckt)OAI: oai:DiVA.org:mdh-40266DiVA, id: diva2:1233693
Tillgänglig från: 2018-07-19 Skapad: 2018-07-19 Senast uppdaterad: 2019-10-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Sök vidare i DiVA

Av författaren/redaktören
Gharehbaghi, Arash
Av organisationen
Inbyggda system
I samma tidskrift
Studies in Health Technology and Informatics
Annan teknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 9 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf