https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using Existing Infrastructure as Support for Wireless Sensor Networks
Mälardalen University, Department of Computer Science and Electronics.
2006 (English)Licentiate thesis, comprehensive summary (Other scientific)
Abstract [sv]

Denna avhandling handlar om hur befintliga datorinfrastrukturer i t.ex. sjukhus och industrier kan avlasta sensornätverk med energikrävande uppgifter. Vi har forskat på olika aspekter som gör det möjligt att förlänga livslängden på dessa sensornätverk. Avhandlingen presenterar en ny plattform för sensornätverk tillsammans med inledande simuleringar som påvisar att vår plattform ökar livslängden på dessa typer av nätverk.

Generella sensornätverk är uppbyggda av tätt grupperade, trådlösa, batteridrivna datorer som kan vara så små som en kubikmillimeter. Datorerna kallas för sensorer eller sensornoder eftersom de har en eller flera inbyggda sensorer som känner av sin omgivning. En sensor har till uppgift att samla information från sin omgivning, t.ex. temperatur, fuktighet, vibrationer, hjärtslag eller bilder. Sensorerna skickar sedan informationen till en insamlingsstation någonstans i nätverket.

I de typer av tillämpningar vi tittar på är det viktigt att minimera energiförbrukningen, så att man maximerar livslängden på sensornätverket. Avhandlingen presenterar en lösning där befintlig datorinfrastruktur fungerar som hjälpdatorer/avlastare till ett sensornätverk. Hjälpdatorerna, eller basstationerna som vi kallar dem i avhandlingen, hanterar energikrävande uppgifter som t.ex. vilken sensor som ska kommunicera med vem samt vid vilken tidpunkt etc. Då kan sensorerna i nätverket fokusera på att utföra sina egna uppgifter tills dess att basstationen säger att uppgifterna ändrats.

Simuleringar visar att vår plattform kan skicka upp till 97 % mera information till basstationen än en jämförbar plattform med samma energimängd. 88 % av våra sensorer är fortfarande vid liv när den andra plattformens sensorer förbrukat all sin energi.

Ett exempel på hur dessa typer av nätverk kan användas är att övervaka patienters hälsa och kondition i sjukhus eller sjukhem. Patienter behöver inte ha en fast sängplats där en viss typ av medicinskt övervakningsinstrument finns tillgänglig utan kan placeras där det finns en ledig sängplats. Via trådlös kommunikation skickar sensorerna sedan hälsoinformation som t.ex. hjärtfrekvens och blodtryck till en basstation som i sin tur skickar vidare till ett centralt övervakningsinstrument någonstans på sjukhuset. Övervakningsinstrumentet behandlar informationen och larmar personal med rätt kompetens vid behov. Larmet kan skickas till en mobiltelefon eller en liten handdator som personalen alltid bär med sig. Med larmet skickas även information om var patienten befinner sig och all nödvändig data för att personalen snabbt ska kunna ställa en första diagnos. På detta sätt kan man spara in på antalet specialbyggda sängplatser och slippa dyrbara installationer av medicintekniska utrustningar knutna till en sängplats.

Abstract [en]

Recent advancements in electronic design, such as low-power circuits, energy efficient wireless communication, and improved energy supply, has enabled the vision of wireless sensor networks to become a reality. Wireless sensor networks typically consist of hundreds up to thousands of collaborating low-cost, battery-driven and wireless sensor nodes with scarce resources. The wireless sensor nodes are typical small physical entities, and usually small as a matchbox but can in extreme cases be no larger than a cubic millimeter.

In this thesis we present an architecture called AROS that uses existing infrastructure to aid in the management of wireless sensor networks. As an example, the existing infrastructure could be situated in hospitals or industrial buildings. The existing infrastructure can aid in prolonging the lifetime of the wireless sensor network by having "unlimited'' energy, long range radio capacity, and high-speed computers. We enable prolonged lifetime by centralizing some of the energy consuming administrative functionality of wireless sensor networks.

We show, by simulations, that the AROS architecture is able to prolong the lifetime of the sensor nodes. AROS is compared to a well known cluster based architecture, LEACH. The comparisons show that AROS with static configuration performs at least as well as LEACH in small wireless sensor networks in the size 100x100m, and up to 97 % better in long distance wireless sensor networks in the size of 400x400m. We show that AROS still has got 88 % of its sensor nodes alive when LEACHs' network demises.

In our simulations we have also studied how dynamic network clustering in AROS, using a TDMA scheduler and non-mobile wireless sensor nodes, affects the amount of data received by a base station. We show that AROS is better than LEACH-C in collecting data to the base station with the same total amount of energy for long distance networks and that AROS performs as well or better than LEACH-C in small wireless sensor networks.

Place, publisher, year, edition, pages
Västerås: Institutionen för Datavetenskap och Elektronik , 2006.
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 66
Keywords [en]
wireless, sensor networks, communication, base station, asymmetric communication, multihop, network lifetime
National Category
Computer Sciences
Research subject
Datavetenskap
Identifiers
URN: urn:nbn:se:mdh:diva-144ISBN: 91-85485-17-9 (print)OAI: oai:DiVA.org:mdh-144DiVA, id: diva2:120520
Presentation
2006-06-20, Kappa, Hus-U, Gurksaltargatan 9, Västerås, 15:00
Opponent
Supervisors
Available from: 2006-05-29 Created: 2006-05-29 Last updated: 2018-01-13
List of papers
1. Using Existing Infrastructure as Proxy Support for Sensor Networks
Open this publication in new window or tab >>Using Existing Infrastructure as Proxy Support for Sensor Networks
2004 (English)Conference paper, Published paper (Refereed)
National Category
Computer Engineering
Identifiers
urn:nbn:se:mdh:diva-4002 (URN)
Conference
16th EUROMICRO Conference on Real-Time Systems (ECRTS 04), WiP
Available from: 2006-05-29 Created: 2006-05-29 Last updated: 2018-01-13Bibliographically approved
2. Asymmetric Multihop Communication in Large Sensor Networks
Open this publication in new window or tab >>Asymmetric Multihop Communication in Large Sensor Networks
2006 (English)In: 2006 1st International Symposium on Wireless Pervasive ComputingVolume 2006, 2006, p. 1-7Conference paper, Published paper (Refereed)
Abstract [en]

With the growing interest in wireless sensor networks, energy efficient communication infrastructures for such networks are becoming increasingly important. In this paper, we compare and simulate asymmetric and symmetric communication in sensor networks. We do this by extending LEACH, a well-known TDMA cluster-based sensor network architecture, to use asymmetric communication. The extension makes it possible to scale up the network size beyond what is feasible with LEACH and its variants LEACH-C and LEACH-F.

National Category
Computer Engineering
Identifiers
urn:nbn:se:mdh:diva-4003 (URN)10.1109/ISWPC.2006.1613561 (DOI)000237179000004 ()2-s2.0-33750394324 (Scopus ID)0780394100 (ISBN)
Conference
2006 1st International Symposium on Wireless Pervasive Computing; Phuket; Thailand; 16 January 2006 through 18 January 2006
Available from: 2006-05-29 Created: 2006-05-29 Last updated: 2018-01-13Bibliographically approved
3. Prolonging Network Lifetime in Long Distance Sensor Networks using a TDMA Scheduler
Open this publication in new window or tab >>Prolonging Network Lifetime in Long Distance Sensor Networks using a TDMA Scheduler
Show others...
2007 (English)Conference paper, Published paper (Other academic)
Abstract [en]

In this paper we present a Time Division Multiple Access (TDMA) scheduler for the Asymmetric communication and ROuting in Sensor networks architecture (AROS). The scheduler enables dynamic network configurations of the AROS architecture. We show that asymmetric multihop communication with dynamic network configurations in AROS prolongs the lifetime of sensor nodes in long distance networks compared to the LEACH architecture.

National Category
Computer Engineering
Identifiers
urn:nbn:se:mdh:diva-4004 (URN)
Conference
Real-Time in Sweden (RTIS), August 21-22, 2007, Västerås, Sweden
Available from: 2006-05-29 Created: 2006-05-29 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(869 kB)1965 downloads
File information
File name FULLTEXT01.pdfFile size 869 kBChecksum SHA-1
4580a8ff912e2d07702258b0027f1495488118dace9da7ef9dd79ef078c947c6c35502a1
Type fulltextMimetype application/pdf

By organisation
Department of Computer Science and Electronics
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1967 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 840 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf