https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Intelligent Data Processing using In-Orbit Advanced Algorithms on Heterogeneous System Architecture
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-8096-3891
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-1687-930X
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-7586-0409
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-8785-5380
2018 (English)In: IEEE Aerospace Conference 2018 IEEEAC2018, 2018, p. 1-8Conference paper, Published paper (Refereed)
Abstract [en]

In recent years, commercial exploitation of small satellites and CubeSats has rapidly increased. Time to market of processed customer data products is becoming an important differentiator between solution providers and satellite constellation operators. Timely and accurate data dissemination is the key to success in the commercial usage of small satellite constellations which is ultimately dependent on a high degree of autonomous fleet management and automated decision support. The traditional way for disseminating data is limited by on the communication capability of the satellite and the ground terminal availability. Even though cloud computing solutions on the ground offer high analytical performance, getting the data from the space infrastructure to the ground servers poses a bottleneck of data analysis and distribution. On the other hand, adopting advanced and intelligent algorithms onboard offers the ability of autonomy, tasking of operations, and fast customer generation of low latency conclusions, or even real-time communication with assets on the ground or other sensors in a multi-sensor configuration. In this paper, the advantages of intelligent onboard processing using advanced algorithms for Heterogeneous System Architecture (HSA) compliant onboard data processing systems are explored. The onboard data processing architecture is designed to handle a large amount of high-speed streaming data and provides hardware redundancy to be qualified for the space mission application domain. We conduct an experimental study to evaluate the performance analysis by using image recognition algorithms based on an open source intelligent machine library 'MIOpen' and an open standard 'OpenVX'. OpenVX is a cross-platform computer vision library.

Place, publisher, year, edition, pages
2018. p. 1-8
Series
IEEE Aerospace Conference Proceedings, ISSN 1095-323X
Keywords [en]
Heterogeneous System Architecture (HSA)Intelligent Data ProcessingMIOpenOpenVXCubeSatCPU-GPUEnergy consumption
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-38628DOI: 10.1109/AERO.2018.8396536ISI: 000474397401066Scopus ID: 2-s2.0-85049840022OAI: oai:DiVA.org:mdh-38628DiVA, id: diva2:1188079
Conference
IEEE Aerospace Conference 2018 IEEEAC2018, 03 Mar 2018, Big Sky, United States
Projects
DPAC - Dependable Platforms for Autonomous systems and ControlAvailable from: 2018-03-06 Created: 2018-03-06 Last updated: 2021-10-01Bibliographically approved
In thesis
1. Improving On-Board Data Processing using CPU-GPU Heterogeneous Architectures for Real-Time Systems
Open this publication in new window or tab >>Improving On-Board Data Processing using CPU-GPU Heterogeneous Architectures for Real-Time Systems
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis investigates the efficacy of heterogeneous computing architectures in real-time systems.The goals of the thesis are twofold. First, to investigate various characteristics of the Heterogeneous System Architectures (HSA) compliant reference platforms focusing on computing performance and power consumption. The investigation is focused on the new technologies that could boost on-board data processing systems in satellites and spacecraft. Second, to enhance the usage of the heterogeneous processing units by introducing a technique for static allocation of parallel segments of tasks.

The investigation and experimental evaluation show that our method of GPU allocation for the parallel segments of tasks is more energy efficient compared to any other studied allocation. The investigation is conducted under different types of environments, such as process-level isolated environment, different software stacks, including kernels, and various task set scenarios. The evaluation results indicate that a balanced use of heterogeneous processing units (CPU and GPU) could improve schedulability of task sets up to 90% with the proposed allocation technique.

Abstract [sv]

Denna avhandling undersöker effektiviteten hos heterogena datorarkitekturer i realtidssystem. Målet med avhandlingen är tvåfaldigt. Till att börja med, att undersöka olika egenskaper hos plattformar baserade på Heterogeneous System Architecture, med fokus på datorprestanda och strömförbrukning. Undersökningen är inriktad på tekniker som kan öka datorbehandlingssystemen ombord i satelliter och rymdskepp. För det andra förbättra användningen av heterogena arkitekturer genom att införa en teknik för statisk allokering av parallella programsegment.

Undersökningen och den experimentella utvärderingen visar att vår metod för effektiv användning av GPU-allokering för parallella programsegment är den mest energieffektiva jämfört med någon annan studerad allokering. Undersökningarna har genomförts i olika typer av miljöer, såsom processisolerad miljö, olika mjukvarustackar, inklusive kernel, och olika uppsättningsscenarier. Utvärderingsresultaten indikerar dessutom att en balanserad användning av heterogena beräkningsenheter (CPU och GPU) kan förbättra schemaläggningen för vissa program upp till 90% jämfört med de tidigare föreslagna allokeringsteknikerna.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 286
Keywords
on-board data processing, CPU-GPU, heterogeneous architectures, real-time systems
National Category
Engineering and Technology Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-45940 (URN)978-91-7485-450-3 (ISBN)
Presentation
2019-12-18, Kappa, Mälardalens högskola, Västerås, 09:15 (English)
Opponent
Supervisors
Projects
DPAC - Dependable Platforms for Autonomous systems and Control
Available from: 2019-11-11 Created: 2019-11-11 Last updated: 2019-11-19Bibliographically approved
2. Space Computing using COTS Heterogeneous Platforms: Intelligent On-Board Data Processing in Space Systems
Open this publication in new window or tab >>Space Computing using COTS Heterogeneous Platforms: Intelligent On-Board Data Processing in Space Systems
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Space computing enriches space activities such as deep-space explorations and in-orbit intelligent decision making. The awareness of space computing is growing due to the technological advances of high-performance commercial off-the-shelf (COTS) computing platforms. Space offers a complex, constrained and challengeable environment to the developers, researchers, as well as human beings. The challenges are size, weight and power (SWaP) constraints, real-time requirements, communication limitations as well as radiation effects. The research conducted in this thesis aims at investigating and supporting intelligent on-board data processing using COTS heterogeneous computing platforms in space systems. These platforms embed at least one Central Processing Unit (CPU) and one Graphics Processing Unit (GPU) on the same chip. 

The main goal of the research presented in this thesis is twofold. First, to investigate the heterogeneous computing platforms for the purpose of proposing a solution to tackle the above-mentioned challenges in space systems. Second, to complement the proposed solution with novel scheduling techniques for real-time applications that run on COTS heterogeneous platforms under harsh environments like space.

The proposed techniques are based on the system model that considers the use of alternative executions of parallel segments of tasks. Although offloading a parallel segment to a parallel computation unit (such as GPU) improves the best-case execution times of most applications, it can increase the response times of tasks in some applications due to the overuse of GPU. Hence, the use of the proposed task model can be a key to decrease the response times of tasks and improve schedulability of the system. The server-based proposed scheduling techniques support the proposed task model by guaranteeing the execution slot for parallel segments on CPU(s). 

The experimental evaluation conducted in this thesis shows that the proposed task model can improve the schedulability of the real-time systems up to 90% with the static allocation of applications. Moreover, the dynamic allocation method using the server-based scheduling with the proposed task model can improve the schedulability up to 16%. Finally, the thesis presents a simulation tool that simulates real-time applications using the proposed task model while considering the different levels of radiation tolerance to different processing units.

Abstract [sv]

Rymddata berikar rymdaktiviteter som utforskningar i djupa rymden och intelligent beslutsfattande i omloppsbana. Medvetenheten om rymddatorn ökar på grund av de tekniska framstegen inom högpresterande commercial off-the-shelf (COTS). Utrymme erbjuder utvecklare, forskare och människor en komplex, begränsad och utmanande miljö. Utmaningarna är storlek, vikt och effekt (SWaP), realtidskrav, kommunikationsbegränsningar samt strålningseffekter. Forskningen som bedrivs i denna avhandling syftar till att undersöka och stödja intelligent omborddatabehandling med hjälp av COTS heterogena datorplattformar i rymdsystem. Dessa plattformar bäddar in minst en Central Processing Unit (CPU) och en Graphics Processing Unit (GPU) på samma chip.

Huvudmålet för den forskning som presenteras i denna avhandling är tvåfaldigt. För det första att undersöka de heterogena dataplattformarna i syfte att föreslå en lösning för att hantera ovan nämnda utmaningar i rymdsystem. För det andra, för att komplettera den föreslagna lösningen med nya schemaläggningstekniker för realtidsapplikationer som körs på COTS heterogena plattformar under tuffa miljöer som rymden.

De föreslagna teknikerna är baserade på systemmodellen som överväger användningen av alternativa utföranden av parallella segment av uppgifter. Även om avlastning av ett parallellt segment till en parallell beräkningsenhet (t.ex. GPU) förbättrar de bästa tillämpningstiderna för de flesta applikationer, kan det öka svarstiderna för uppgifter i vissa applikationer på grund av överanvändning av GPU. Därför kan användningen av den föreslagna uppgiftsmodellen vara en nyckel för att minska responstiderna för uppgifter och förbättra systemets schemaläggning. De serverbaserade föreslagna schemaläggningsteknikerna stöder den föreslagna uppgiftsmodellen genom att garantera exekveringsplatsen för parallella segment på CPU (er).

Den experimentella utvärderingen som utförs i denna avhandling visar att den föreslagna uppgiftsmodellen kan förbättra schemaläggningen för realtidssystem upp till 90% med statisk tilldelning av applikationer. Dessutom kan den dynamiska tilldelningsmetoden som använder den serverbaserade schemaläggningen med den föreslagna uppgiftsmodellen förbättra schemaläggningen med upp till 16%. Slutligen presenterar avhandlingen ett simuleringsverktyg som simulerar applikationer i realtid med hjälp av den föreslagna uppgiftsmodellen samtidigt som man beaktar de olika nivåerna av strålningstolerans för olika behandlingsenheter.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2021
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 347
Keywords
space computing, CPU-GPU heterogeneous computing, intelligent on-board data processing
National Category
Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-56086 (URN)978-91-7485-528-9 (ISBN)
Public defence
2021-11-18, Alfa, Mälardalens högskola, Västerås, 13:15 (English)
Opponent
Supervisors
Available from: 2021-10-08 Created: 2021-10-01 Last updated: 2021-10-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tsog, NandinbaatarBehnam, MorisNolin, MikaelBruhn, Fredrik

Search in DiVA

By author/editor
Tsog, NandinbaatarBehnam, MorisNolin, MikaelBruhn, Fredrik
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 185 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf