mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Time-Predictable Fog-Integrated Cloud Framework: One Step Forward in the Deployment of a Smart Factory
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1384-5323
University of Tehran, Iran.
University of Tehran, Iran.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1364-8127
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: CSI International Symposium on Real-Time and Embedded Systems and Technologies REST'18, 2018, s. 54-62Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper highlights cloud computing as one of the principal building blocks of a smart factory, providing a huge data storage space and a highly scalable computational capacity. The cloud computing system used in a smart factory should be time-predictable to be able to satisfy hard real-time requirements of various applications existing in manufacturing systems. Interleaving an intermediate computing layer-called fog-between the factory and the cloud data center is a promising solution to deal with latency requirements of hard real-time applications. In this paper, a time-predictable cloud framework is proposed which is able to satisfy end-to-end latency requirements in a smart factory. To propose such an industrial cloud framework, we not only use existing real-time technologies such as Industrial Ethernet and the Real-time XEN hypervisor, but we also discuss unaddressed challenges. Among the unaddressed challenges, the partitioning of a given workload between the fog and the cloud is targeted. Addressing the partitioning problem not only provides a resource provisioning mechanism, but it also gives us a prominent design decision specifying how much computing resource is required to develop the fog platform, and how large should the minimum communication bandwidth be between the fog and the cloud data center.

Ort, förlag, år, upplaga, sidor
2018. s. 54-62
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-38638DOI: 10.1109/RTEST.2018.8397079ISI: 000467076600008Scopus ID: 2-s2.0-85050457708ISBN: 9781538614754 (tryckt)OAI: oai:DiVA.org:mdh-38638DiVA, id: diva2:1182240
Konferens
CSI International Symposium on Real-Time and Embedded Systems and Technologies REST'18, 09 May 2018, Tehran, Iran
Projekt
PREMISE - Predictable Multicore SystemsTillgänglig från: 2018-02-12 Skapad: 2018-02-12 Senast uppdaterad: 2019-05-24Bibliografiskt granskad
Ingår i avhandling
1. Optimizing Timing-Critical Cloud Resources in a Smart Factory
Öppna denna publikation i ny flik eller fönster >>Optimizing Timing-Critical Cloud Resources in a Smart Factory
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis addresses the topic of resource efficiency in the context of timing critical components that are used in the realization of a Smart Factory.The concept of the smart factory is a recent paradigm to build future production systems in a way that is both smarter and more flexible. When it comes to realization of a smart factory, three principal elements play a significant role, namely Embedded Systems, Internet of Things (IoT) and Cloud Computing. In a smart factory, efficient use of computing and communication resources is a prerequisite not only to obtain a desirable performance for running industrial applications, but also to minimize the deployment cost of the system in terms of the size and number of resources that are required to run industrial applications with an acceptable level of performance. Most industrial applications that are involved in smart factories, e.g., automation and manufacturing applications, are subject to a set of strict timing constraints that must be met for the applications to operate properly. Such applications, including underlying hardware and software components that are used to run the application, constitute a real-time system. In real-time systems, the first and major concern of the system designer is to provide a solution where all timing constraints are met. To do so we need a time-predictable IoT/Cloud Computing framework to deal with the real-time constraints that are inherent in industrial applications running in a smart factory. Afterwards, with respect to the time predictable framework, the number of required computing and communication resources can and should be optimized such that the deployed system is cost efficient. In this thesis, to investigate and present solutions that provide and improve the resource efficiency of computing and communication resources in a smart factory, we conduct research following three themes: (i) multi-core embedded processors, which are the key element in terms of computing components embedded in the machinery of a smart factory, (ii) cloud computing data centers, as the supplier of a massive data storage and a large computational power, and(iii) IoT, for providing the interconnection of computing components embedded in the objects of a smart factory. Each of these themes are targeted separately to optimize resource efficiency. For each theme, we identify key challenges when it comes to achieving a resource-efficient design of the system. We then formulate the problem and propose solutions to optimize the resource efficiency of the system, while satisfying all timing constraints reflected in the model. We then propose a comprehensive resource allocation mechanism to optimize the resource efficiency in the whole system while considering the characteristics of each of these research themes. The experimental results indicate a clear improvement when it comes to timing-critical IoT / Cloud Computing resources in a smart factory. At the level of multi-core embedded devices, the total CPU usage of a quad-core processor is shown to be improved by 11.2%. At the level of Cloud Computing, the number of cloud servers that are required to execute a given set of real-time applications is shown to be reduced by 25.5%. In terms of network components that are used to collect sensor data, our proposed approach reduces the total deployment cost of thesystem by 24%. In summary these results all contribute towards the realization of a future smart factory.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2018
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 255
Nyckelord
Cloud Computing; Fog Computing; Edge Computing; Real-Time Systems; Resource Allocation
Nationell ämneskategori
Datorsystem
Forskningsämne
datavetenskap
Identifikatorer
urn:nbn:se:mdh:diva-38659 (URN)978-91-7485-376-6 (ISBN)
Disputation
2018-03-08, Gamma, Mälardalens högskola, Västerås, 13:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-02-13 Skapad: 2018-02-12 Senast uppdaterad: 2018-06-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Faragardi, Hamid RezaPapadopoulos, AlessandroNolte, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Faragardi, Hamid RezaPapadopoulos, AlessandroNolte, Thomas
Av organisationen
Inbyggda system
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 364 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf