mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reassessing the Pattern-Based Approach for Formalizing Requirements in the Automotive Domain
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Scania, Sodertalje, Sweden..
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-4987-7669
2014 (English)In: 2014 IEEE 22ND INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE), IEEE , 2014, p. 444-450Conference paper (Refereed)
Abstract [en]

The importance of using formal methods and techniques for verification of requirements in the automotive industry has been greatly emphasized with the introduction of the new ISO26262 standard for road vehicles functional safety. The lack of support for formal modeling of requirements still represents an obstacle for the adoption of the formal methods in industry. This paper presents a case study that has been conducted in order to evaluate the difficulties inherent to the process of transforming the system requirements from their traditional written form into semi-formal notation. The case study focuses on a set of non-structured functional requirements for the Electrical and Electronic (E/E) systems inside heavy road vehicles, written in natural language, and reassesses the applicability of the extended Specification Pattern System (SPS) represented in a restricted English grammar. Correlating this experience with former studies, we observe that, as previously claimed, the concept of patterns is likely to be generally applicable for the automotive domain. Additionally, we have identified some potential difficulties in the transformation process, which were not reported by the previous studies and will be used as a basis for further research.

Place, publisher, year, edition, pages
IEEE , 2014. p. 444-450
Series
Proceedings of International Requirements Engineering, ISSN 1097-0592
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-38376ISI: 000363280400055ISBN: 978-1-4799-3033-3 (print)OAI: oai:DiVA.org:mdh-38376DiVA, id: diva2:1182207
Conference
IEEE 22nd International Requirements Engineering Conference (RE), AUG 25-29, 2014, Blekinge Inst Technol, Karlskrona, SWEDEN
Available from: 2018-02-12 Created: 2018-02-12 Last updated: 2019-05-09Bibliographically approved
In thesis
1. Automated Approaches for Formal Verification of Embedded Systems Artifacts
Open this publication in new window or tab >>Automated Approaches for Formal Verification of Embedded Systems Artifacts
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Modern embedded software is so large and complex that creating the necessary artifacts, including system requirements specifications and design-time models, as well as assuring their correctness have become difficult to manage. One challenge stems from the high number and intricacy of system requirements that combine functional and possibly timing or other types of constraints, which make them hard to analyze. Another challenge is the quality assurance of various design-time models developed using Simulink as the de facto standard model-based development tool in the automotive domain, avionics domain, etc. Currently, the industrial state-of-practice resorts to simulation of Simulink models, which gives insight in the system’s behavior yet does not provide a high degree of assurance that the model behaves correctly. A potential way to address the aforementioned challenges is to apply computer-aided, mathematically-rigorous methods for specification, analysis and verification already at the requirements specification stage, but also at later development stages.

In this thesis, we propose a set of approaches for the formal specification, analysis and verification of system requirement specifications and design-time Simulink models, with particular focus on the automotive industry. Our contributions are as follows: first, we assess the expressiveness of an existing patternbased technique for the formal requirements specification on an operational system. Based on the positive findings, we deem the technique expressive enough to capture systems requirements in controlled natural language, from which formal counterparts can be automatically generated. To bring the approach closer to the practitioners we propose a tool, called PROPAS. Next, we propose an automated consistency analysis approach based on Satisfiability Modulo Theories for the system requirements specifications formally encoded as temporal logic formulas. The approach is implemented in our PROPAS tool and is suitable to analyze the lack of logical contradictions within the system specification, at early system development phases. Our next contribution addresses the formal analysis and verification of large Simulink models. First, we propose a pattern-based and execution-order-preserving approach for transforming Simulink models into networks of stochastic timed automata, which can be analyzed using the UPPAAL SMC tool that returns the probability that a property is satisfied by the model. For the automated generation of the analysis model, we propose the SIMPPAAL tool. Our second approach is based on bounded model checking and is suitable for checking invariance properties of Simulink models. Compared to the statistical model checking approach, the invariance checking is reduced to a satisfiability problem. In case of property violation, the procedure generates a counter-example execution trace, which can be used for refining the model. In the same work we show that there exist commonly-used design patterns in Simulink models, for which the verification result is complete. The approach is supported by our SYMC tool.

For validation of the specification patterns, and the PROPAS tool we perform a case-study evaluation with practitioners, in collaboration with our industrial partner Scania. The results show that the pattern-based approach and the PROPAS tool can be practically useful in industrial settings. We apply the statistical model-checking approach and the SIMPPAAL tool on two industrial use cases, namely Brake-by-Wire and Adjustable Speed Limiter from Volvo Group Trucks Technology, which yields encouraging results. Finally, we validate the bounded invariance-checking approach and the SYMC tool on the Brake-by-Wire system, where we demonstrate both complete and incomplete verification of invariance properties.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 292
Keywords
embedded systems, Simulink, systems specifications, model-checking, formal verification
National Category
Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-43408 (URN)978-91-7485-429-9 (ISBN)
Public defence
2019-06-17, Gamma, Mälardalens högskola, Västerås, 13:30 (English)
Opponent
Supervisors
Projects
VeriSpec
Available from: 2019-05-09 Created: 2019-05-09 Last updated: 2019-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Filipovikj, PredragRodriguez-Navas, Guillermo

Search in DiVA

By author/editor
Filipovikj, PredragRodriguez-Navas, Guillermo
By organisation
Embedded Systems
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf