mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis of Key Factors in Heat Demand Prediction with Neural Networks
Beijing University of Posts and Telecommunications, China.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-6279-4446
Beijing University of Posts and Telecommunications, China..
Shandong University, China.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 105, s. 2965-2970Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [sv]

The development of heat metering has promoted the development of statistic models for the prediction of heat demand, due to the large amount of available data, or big data. Weather data have been commonly used as input in such statistic models. In order to understand the impacts of direct solar radiance and wind speed on the model performance comprehensively, a model based on Elman neural networks (ENN) was adopted, of which the results can help heat producers to optimize their production and thus mitigate costs. Compared with the measured heat demand, the introduction of wind speed and direct solar radiation has opposite impacts on the performance of ENN and the inclusion of wind speed can improve the prediction accuracy of ENN. However, ENN cannot benefit from the introduction of both wind speed and direct solar radiation simultaneously. 

sted, utgiver, år, opplag, sider
2017. Vol. 105, s. 2965-2970
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-37560DOI: 10.1016/j.egypro.2017.03.704ISI: 000404967903011Scopus ID: 2-s2.0-85020715688OAI: oai:DiVA.org:mdh-37560DiVA, id: diva2:1169133
Konferanse
8th International Conference on Applied Energy, ICAE 2016, 8 October 2016 through 11 October 2016
Tilgjengelig fra: 2017-12-22 Laget: 2017-12-22 Sist oppdatert: 2018-07-25bibliografisk kontrollert

Open Access i DiVA

fulltext(763 kB)106 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 763 kBChecksum SHA-512
d402ba7c03365b51da0a32d165dd0c876b34937678dab7e28279c39082f230327cc21ce79db1c6a99626ffdf5d63369d07c7d58f0f13ce02310d016b8edaf0ad
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Li, HailongWallin, Fredrik

Søk i DiVA

Av forfatter/redaktør
Li, HailongWallin, Fredrik
Av organisasjonen
I samme tidsskrift
Energy Procedia

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 106 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 83 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf