mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. (FEC, Track 3, Modeling and Simulation)ORCID-id: 0000-0002-9490-9703
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0001-8849-7661
ABB AB, Corporate Research, Sweden.
2017 (Engelska)Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 207, s. 624-633Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Losses in an electric motor amount to between 4–24% of the total electrical power, and are converted to heat. The maximum hot spot temperature is one of the design constraints of thermal and electrical performance. Several studies have explored flow and thermal characteristics inside the air-gap between two concentric rotating cylinders such as those found in electric motors, however the transient flow and thermal effects still remain a challenge. This study uses Computational Fluid Dynamics to predict the thermal behaviour of a machine rotating at the kind of speed usually encountered in motors. The Reynolds Averaged Navier-Stokes model together with the realizable k-ε turbulence model are used to perform transient simulations. Velocity profiles and temperature distribution inside the air-gap are obtained and validated. The transient flow features and their impact on thermal performance are discussed. The numerical results show turbulent Taylor vortices inside the air-gap that lead to a periodic temperature distribution. When compared to correlations from published literature, the simulated average heat transfer coefficient at the rotor surface shows overall good agreement. The transient effects introduce local impacts like oscillations to the Taylor-Couette vortices. These flow oscillations result in oscillations of the hotspots. However, this transient oscillatory behaviour does not show any additional impact on the global thermal performance.

Ort, förlag, år, upplaga, sidor
2017. Vol. 207, s. 624-633
Nyckelord [en]
Air-gap, Rotating electrical machines, CFD simulation, Thermal analysis, Motor simulation, Taylor vortices
Nationell ämneskategori
Energiteknik
Forskningsämne
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-37476DOI: 10.1016/j.apenergy.2017.07.011ISI: 000417229300055Scopus ID: 2-s2.0-85024104684OAI: oai:DiVA.org:mdh-37476DiVA, id: diva2:1167113
Tillgänglig från: 2017-12-18 Skapad: 2017-12-18 Senast uppdaterad: 2018-11-01Bibliografiskt granskad
Ingår i avhandling
1. Fluid Flow and Heat Transfer Simulations for Complex Industrial Applications: From Reynolds Averaged Navier-Stokes towards Smoothed Particle Hydrodynamics
Öppna denna publikation i ny flik eller fönster >>Fluid Flow and Heat Transfer Simulations for Complex Industrial Applications: From Reynolds Averaged Navier-Stokes towards Smoothed Particle Hydrodynamics
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Optimal process control can significantly enhance energy efficiency of heating and cooling processes in many industries. Process control systems typically rely on measurements and so called grey or black box models that are based mainly on empirical correlations, in which the transient characteristics and their influence on the control parameters are often ignored. A robust and reliable numerical technique, to solve fluid flow and heat transfer problems, such as computational fluid dynamics (CFD), which is capable of providing a detailed understanding of the multiple underlying physical phenomena, is a necessity for optimization, decision support and diagnostics of complex industrial systems. The thesis focuses on performing high-fidelity CFD simulations of a wide range of industrial applications to highlight and understand the complex nonlinear coupling between the fluid flow and heat transfer. The industrial applications studied in this thesis include cooling and heating processes in a hot rolling steel plant, electric motors, heat exchangers and sloshing inside a ship carrying liquefied natural gas. The goal is to identify the difficulties and challenges to be met when simulating these applications using different CFD tools and methods and to discuss the strengths and limitations of the different tools.

The mesh-based finite volume CFD solver ANSYS Fluent is employed to acquire detailed and accurate solutions of each application and to highlight challenges and limitations. The limitations of conventional mesh-based CFD tools are exposed when attempting to resolve the multiple space and time scales involved in large industrial processes. Therefore, a mesh-free particle method, smoothed particle hydrodynamics (SPH) is identified in this thesis as an alternative to overcome some of the observed limitations of the mesh-based solvers. SPH is introduced to simulate some of the selected cases to understand the challenges and highlight the limitations. The thesis also contributes to the development of SPH by implementing the energy equation into an open-source SPH flow solver to solve thermal problems. The thesis highlights the current state of different CFD approaches towards complex industrial applications and discusses the future development possibilities.

The overall observations, based on the industrial problems addressed in this thesis, can serve as decision tool for industries to select an appropriate numerical method or tool for solving problems within the presented context. The analysis and discussions also serve as a basis for further development and research to shed light on the use of CFD simulations for improved process control, optimization and diagnostics.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2018
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 282
Nyckelord
Computational Fluid Dynamics, Heat transfer, Industrial applications, Reynolds Averaged Navier-Stokes, Smoothed Particle Hydrodynamics, Energy enginnering, Thermal Management, Process control
Nationell ämneskategori
Energiteknik
Forskningsämne
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-41277 (URN)978-91-7485-415-2 (ISBN)
Disputation
2018-12-14, Delta, Mälardalens högskola, Västerås, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-11-02 Skapad: 2018-11-01 Senast uppdaterad: 2018-11-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttps://www.sciencedirect.com/science/article/pii/S0306261917308711

Personposter BETA

Hosain, Md LokmanBel Fdhila, Rebei

Sök vidare i DiVA

Av författaren/redaktören
Hosain, Md LokmanBel Fdhila, Rebei
Av organisationen
Framtidens energi
I samma tidskrift
Applied Energy
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 191 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf