mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Loss of Conservation of Graph Centralities in Reverse-engineered Transcriptional Regulatory Networks
Uppsala University, Sweden. (MAM)
Uppsala University, Sweden.
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)ORCID-id: 0000-0002-1624-5147
Uppsala University, Sweden.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Methodology and Computing in Applied Probability, ISSN 1387-5841, E-ISSN 1573-7713, ISSN 1387-5841, Vol. 19, nr 4, s. 1095-1105Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Graph centralities are commonly used to identify and prioritize disease genes in transcriptional regulatory networks. Studies on small networks of experimentally validated protein-protein interactions underpin the general validity of this approach and extensions of such findings have recently been proposed for networks inferred from gene expression data. However, it is largely unknown how well gene centralities are preserved between the underlying biological interactions and the networks inferred from gene expression data. Specifically, while previous studies have evaluated the performance of inference methods on synthetic gene expression, it has not been established how the choice of inference method affects individual centralities in the network. Here, we compare two gene centrality measures between reference networks and networks inferred from corresponding simulated gene expression data, using a number of commonly used network inference methods. The results indicate that the centrality of genes is only moderately conserved for all of the inference methods used. In conclusion, caution should be exercised when inspecting centralities in reverse-engineered networks and further work will be required to establish the use of such networks for prioritizing disease genes.

Ort, förlag, år, upplaga, sidor
Springer, 2017. Vol. 19, nr 4, s. 1095-1105
Nyckelord [en]
Transcriptional regulatory network inference,  Simulated gene expression,  Graph centrality
Nationell ämneskategori
Sannolikhetsteori och statistik Bioinformatik och systembiologi Bioinformatik (beräkningsbiologi)
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-36593DOI: 10.1007/s11009-017-9554-7ISI: 000413792200006Scopus ID: 2-s2.0-85016734266OAI: oai:DiVA.org:mdh-36593DiVA, id: diva2:1145932
Konferens
15th Applied Stochastic Models and Data Analysis International Conference (ASMDA), Univ Piraeus, Piraeus, GREECE, JUN 30-JUL 04, 2015
Forskningsfinansiär
BarncancerfondenTillgänglig från: 2017-09-30 Skapad: 2017-10-01 Senast uppdaterad: 2019-02-06Bibliografiskt granskad
Ingår i avhandling
1. Graph theory based approaches for gene prioritization in biological networks: Application to cancer gene detection in medulloblastoma
Öppna denna publikation i ny flik eller fönster >>Graph theory based approaches for gene prioritization in biological networks: Application to cancer gene detection in medulloblastoma
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Networks provide an intuitive and highly adaptable means to model relationships between objects. When translated to mathematical graphs, they become further amenable to a plethora of mathematical operations that allow a detailed study of the underlying relational data. Thus, it is not surprising that networks have evolved to a predominant method for analyzing such data in a vast variety of research fields. However, with increasing complexity of the studied problems, application of network modeling also becomes more challenging. Specifically, given a process to be studied, (i) which interactions are important and how can they be modeled, (ii) how can relationships be inferred from complex and potentially noisy data, and (iii) which methods should be used to test hypotheses or answer the relevant questions? This thesis explores the concept and challenges of network analysis in the context of a well-defined application area, i.e. the prediction of cancer genes from biological networks, with an application to medulloblastoma research.

Medulloblastoma represents the most common malignant brain tumor in children. Currently about 70% of treated patients survive, but they often suffer from permanent cognitive sequelae. Medulloblastoma has previously been shown to harbor at least four distinct molecular subgroups. Related studies have also greatly advanced our understanding of the genetic aberrations associated with MB subgroups. However, to translate such findings to novel and improved therapy options, further insights are required into how the dysregulated genes interact with the rest of the cellular system, how such a cross-talk can drive tumor development, and how the arising tumorigenic processes can be targeted by drugs. Establishing such understanding requires investigations that can address biological processes at a more system-wide level, a task that can be approached through the study of cellular systems as mathematical networks of molecular interactions.

This thesis discusses the identification of cancer genes from a network perspective, where specific focus is placed on one particular type of network, i.e. so called gene regulatory networks that model relationships between genes at the expression level. The thesis outlines the bridge between biological and mathematical network concepts. Specifically, the computational challenge of inferring such networks from molecular data is presented. Mathematical approaches for analyzing these networks are outlined and it is explored how such methods might be affected by network inference. Further focus is placed on dealing with the challenges of establishing a suitable gene expression dataset for network inference in MB. Finally, the thesis is concluded with an application of various network approaches in a hypothesis-driven study in MB, in which various novel candidate genes were prioritized.  

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalens högskola, 2019
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 286
Nationell ämneskategori
Matematik Bioinformatik (beräkningsbiologi)
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-42590 (URN)978-91-7485-420-6 (ISBN)
Disputation
2019-03-08, Gamma, Mälardalens högskola, Västerås, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-02-06 Skapad: 2019-02-06 Senast uppdaterad: 2019-10-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusOpen access to free full text

Personposter BETA

Engström, ChristopherSilvestrov, Sergei

Sök vidare i DiVA

Av författaren/redaktören
Engström, ChristopherSilvestrov, Sergei
Av organisationen
Utbildningsvetenskap och Matematik
I samma tidskrift
Methodology and Computing in Applied Probability
Sannolikhetsteori och statistikBioinformatik och systembiologiBioinformatik (beräkningsbiologi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 39 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf