mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparing Model-Based Predictive Approaches to Self-Adaptation: CobRA and PLA
Carnegie Mellon University, USA.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1364-8127
University of Brighton, UK.
Carnegie Mellon University, USA.
Vise andre og tillknytning
2017 (engelsk)Inngår i: 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems SEAMS 17, 2017, s. 42-53, artikkel-id 7968131Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Modern software-intensive systems must often guarantee certain quality requirements under changing run-time conditions and high levels of uncertainty. Self-adaptation has proven to be an effective way to engineer systems that can address such challenges, but many of these approaches are purely reactive and adapt only after a failure has taken place. To overcome some of the limitations of reactive approaches (e.g., lagging behind environment changes and favoring short-term improvements), recent proactive self-adaptation mechanisms apply ideas from control theory, such as model predictive control (MPC), to improve adaptation. When selecting which MPC approach to apply, the improvement that can be obtained with each approach is scenario-dependent, and so guidance is needed to better understand how to choose an approach for a given situation. In this paper, we compare CobRA and PLA, two approaches that are inspired by MPC. CobRA is a requirements-based approach that applies control theory, whereas PLA is architecture-based and applies stochastic analysis. We compare the two approaches applied to RUBiS, a benchmark system for web and cloud application performance, discussing the required expertise needed to use both approaches and comparing their run-time performance with respect to different metrics.

sted, utgiver, år, opplag, sider
2017. s. 42-53, artikkel-id 7968131
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-35478DOI: 10.1109/SEAMS.2017.2Scopus ID: 2-s2.0-85027190822OAI: oai:DiVA.org:mdh-35478DiVA, id: diva2:1108093
Konferanse
12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems SEAMS 17, 22 May 2017, Buenos Aires, Argentina
Prosjekter
Future factories in the CloudTilgjengelig fra: 2017-06-12 Laget: 2017-06-12 Sist oppdatert: 2018-12-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Papadopoulos, Alessandro

Søk i DiVA

Av forfatter/redaktør
Papadopoulos, Alessandro
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 20 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf