mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance modeling of stream joins
Chalmers University of Technology, Göteborg, Sweden.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1364-8127
Chalmers University of Technology, Göteborg, Sweden.
Chalmers University of Technology, Göteborg, Sweden.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: DEBS '17 Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems, 2017, s. 191-202Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Streaming analysis is widely used in a variety of environments, from cloud computing infrastructures up to the network’s edge. In these contexts, accurate modeling of streaming operators’ performance enables fine-grained prediction of applications’ behavior without the need of costly monitoring. This is of utmost importance for computationally-expensive operators like stream joins, that observe throughput and latency very sensitive to rate-varying data streams, especially when deterministic processing is required. In this paper, we present a modeling framework for estimating the throughput and the latency of stream join processing. The model is presented in an incremental step-wise manner, starting from a centralized non-deterministic stream join and expanding up to a deterministic parallel stream join. The model describes how the dynamics of throughput and latency are influenced by the number of physical input streams, as well as by the amount of parallelism in the actual processing and the requirement for determinism. We present an experimental validation of the model with respect to the actual implementation. The proposed model can provide insights that are catalytic for understanding the behavior of stream joins against different system deployments, with special emphasis on the influences of determinism and parallelization.

Ort, förlag, år, upplaga, sidor
2017. s. 191-202
Nyckelord [en]
Data Streaming, Stream Join, Modeling
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-35501DOI: 10.1145/3093742.3093923Scopus ID: 2-s2.0-85023192529ISBN: 978-1-4503-5065-5 (tryckt)OAI: oai:DiVA.org:mdh-35501DiVA, id: diva2:1107560
Konferens
11th ACM International Conference on Distributed and Event-Based Systems DEBS 17, 19-23 Jun 2017, Barcelona, Spain
Projekt
Future factories in the CloudTillgänglig från: 2017-06-09 Skapad: 2017-06-09 Senast uppdaterad: 2017-07-27Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Papadopoulos, Alessandro

Sök vidare i DiVA

Av författaren/redaktören
Papadopoulos, Alessandro
Av organisationen
Inbyggda system
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 331 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf