https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mesoscale Climate Datasets for Building Modelling and Simulation
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. (Reesbe)ORCID-id: 0000-0003-3530-0209
2016 (Engelska)Ingår i: CLIMA 2016 - proceedings of the 12th REHVA World Congress: volume 9. Aalborg: Aalborg University, Department of Civil Engineering. / [ed] Heiselberg, Per Kvols, Aalborg, 2016, Vol. 9, artikel-id 659Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This work presents a method to make use of gridded historical mesoscale datasets for energy and hygrothermal building modelling and simulation purposes by transforming, merging and formatting them into time series. The main result of this work is a web tool, https://rokka.shinyapps.io/shinyweatherdata, allowing users to create actual climate dataset for any location in North Europe in file formats used by common building simulations tools. A review is conducted on freely available gridded mesoscale datasets/model systems for north Europe: the modelling systems MESAN and STRÅNG currently used as data source for the developed web tool as well as the SARAH model system and MESAN/MESCAN reanalysis datasets.

Ort, förlag, år, upplaga, sidor
Aalborg, 2016. Vol. 9, artikel-id 659
Nyckelord [en]
weather data, mesoscale, time series, building simulation
Nationell ämneskategori
Energiteknik
Forskningsämne
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-34569ISBN: 87-91606-34-9 (tryckt)OAI: oai:DiVA.org:mdh-34569DiVA, id: diva2:1060864
Konferens
CLIMA 2016 - 12th REHVA World Congress, 22–25 May 2016, Aalborg, Denmark
Projekt
reesbe
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2016-12-30 Skapad: 2016-12-30 Senast uppdaterad: 2020-07-06Bibliografiskt granskad
Ingår i avhandling
1. Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
Öppna denna publikation i ny flik eller fönster >>Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

There is a global need to reduce energy consumption and integrate a larger share of renewable energy production while meeting expectations for human well-being and economic growth. Buildings have a key role to play in this transition to more sustainable cities and communities.

Building energy modeling (BEM) and simulation are needed to gain detailed knowledge ofthe heat flows and parameters that determine the thermal energy performance of a building. Remote sensing techniques have enabled the generation of geometrical representations of existing buildings on the scale of entire cities. However, parameters describing the thermal properties ofthe building envelope and the technical systems are usually not readily accessible in a digitized form and need to be inferred. Further, buildings are complex systems with indoor environmental conditions that vary dynamically under the stochastic influence of weather and occupant behavior and the availability of metering data is often limited. Consequently, robust inference is needed to handle high and time-varying uncertainty and a varying degree of data availability.

This thesis starts with investigation of meteorological reanalyses, remote sensing and onsite metering data sources. Next, the developed dynamic and physics-based BEM, consisting of a thermal network and modeling procedures for the technical systems, passive heat gains and boundary conditions, is presented. Finally, the calibration framework is presented, including a method to transform a deterministic BEM into a fully probabilistic BEM, an iterated extended Kalman filtering algorithm and a probabilistic calibration procedure to infer uncertain parameters and incorporate prior knowledge.

The results suggest that the proposed BEM is sufficiently detailed to provide actionable insights, while remaining identifiable given a sufficiently informative prior model. Such a prior model can be obtained based solely on knowledge of the underlying physical properties of the parameters, but also enables incorporation of more specific information about the building. The probabilistic calibration approach has the capability to combine evidence from both data and knowledge-based sources; this is necessary for robust inference given the often highly uncertain reality in which buildings operate.

The contributions of this thesis bring us a step closer to producing models of existing buildings, on the scale of whole cities, that can simulate reality sufficiently well to gain actionable insights on thermal energy performance, enable buildings to act as active components of the energy system and ultimately increase the operational resilience of the built environment.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2020
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 318
Nationell ämneskategori
Energisystem
Forskningsämne
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-49378 (URN)978-91-7485-473-2 (ISBN)
Disputation
2020-09-10, Milos + digital (Zoom), Mälardalens högskola, Västerås, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-07-06 Skapad: 2020-07-06 Senast uppdaterad: 2020-07-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://vbn.aau.dk/en/publications/clima-2016--proceedings-of-the-12th-rehva-world-congress(41374e2e-8396-4d9c-a886-bf21d5420bbe).html

Sök vidare i DiVA

Av författaren/redaktören
Lundström, Lukas
Av organisationen
Framtidens energi
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 220 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf