mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Linear and Nonlinear Classifiers of Data withSupport Vector Machines and GeneralizedSupport Vector Machines
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. Department of Mathematics, COMSATS Institute of Information Technology. (MAM)ORCID-id: 0000-0001-6516-3212
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)ORCID-id: 0000-0002-0865-7248
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (MAM)ORCID-id: 0000-0003-4554-6528
2016 (Engelska)Ingår i: Engineering Mathematics II: Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization / [ed] Sergei Silvestrov; Milica Rancic, Springer, 2016, s. 377-396Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

The support vector machine for linear and nonlinear classification of datais studied. The notion of generalized support vector machine for data classifications is used. The problem of generalized support vector machine is shown to be equivalent to the problem of generalized variational inequality and various results for the existence of solutions are established. Moreover, examples supporting the results are provided.

Ort, förlag, år, upplaga, sidor
Springer, 2016. s. 377-396
Serie
Springer Proceedings in Mathematics and Statistics, ISSN 2194-1009 ; 179
Nyckelord [en]
generalized support vector machine, data classification, generalized variational inequality
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-33385Scopus ID: 2-s2.0-85012915546ISBN: 978-3-319-42104-9 (tryckt)ISBN: 978-3-319-42105-6 (tryckt)OAI: oai:DiVA.org:mdh-33385DiVA, id: diva2:1034029
Tillgänglig från: 2016-10-11 Skapad: 2016-10-11 Senast uppdaterad: 2019-01-15Bibliografiskt granskad
Ingår i avhandling
1. Fixed points, fractals, iterated function systems and generalized support vector machines
Öppna denna publikation i ny flik eller fönster >>Fixed points, fractals, iterated function systems and generalized support vector machines
2016 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

In this thesis, fixed point theory is used to construct a fractal type sets and to solve data classification problem. Fixed point method, which is a beautiful mixture of analysis, topology, and geometry has been revealed as a very powerful and important tool in the study of nonlinear phenomena. The existence of fixed points is therefore of paramount importance in several areas of mathematics and other sciences. In particular, fixed points techniques have been applied in such diverse fields as biology, chemistry, economics, engineering, game theory and physics. In Chapter 2 of this thesis it is demonstrated how to define and construct a fractal type sets with the help of iterations of a finite family of generalized F-contraction mappings, a class of mappings more general than contraction mappings, defined in the context of b-metric space. This leads to a variety of results for iterated function system satisfying a different set of contractive conditions. The results unify, generalize and extend various results in the existing literature. In Chapter 3, the theory of support vector machine for linear and nonlinear classification of data and the notion of generalized support vector machine is considered. In the thesis it is also shown that the problem of generalized support vector machine can be considered in the framework of generalized variation inequalities and results on the existence of solutions are established.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University Press, 2016. s. 66
Serie
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 247
Nyckelord
support vector machine, fixed points, iterated function system, variational inequality
Nationell ämneskategori
Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-33511 (URN)978-91-7485-302-5 (ISBN)
Presentation
2016-12-12, U2-016, Mälardalen University, Västerås, 14:15 (Engelska)
Opponent
Handledare
Projekt
FUSION
Tillgänglig från: 2016-11-09 Skapad: 2016-11-08 Senast uppdaterad: 2016-11-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Scopushttp://www.springer.com/gp/book/9783319421049

Sök vidare i DiVA

Av författaren/redaktören
Nazir, TalatQi, XiaominSilvestrov, Sergei
Av organisationen
Utbildningsvetenskap och Matematik
Beräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 70 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf