mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Differential evolution based on decomposition for solving multi-objective optimization problems
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0001-9857-4317
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-3425-3837
2016 (Engelska)Ingår i: ICAART 2016 - Proceedings of the 8th International Conference on Agents and Artificial Intelligence, 2016, s. 512-516Konferensbidrag, Publicerat paper (Refereegranskat)
Resurstyp
Text
Abstract [en]

Optimization problems with multiple objectives are often encountered in many scientific and engineering scenarios. The prior works on multi-objective differential evolution (DE) have mainly focused on nondominated sorting of solutions to handle different objectives at the same time. This paper suggests a new approach to differential evolution which is based on decomposition of the original problem into a set of scalar optimization subproblems. We design a decomposition-based DE algorithm to optimize these scalar subproblems simultaneously by evolving a population of solutions with proper mutation and selection operators. Since the proposed DE algorithm does not involve pairwise comparison and non-dominated sorting of solutions, it would incur lower computational complexity than the dominance-based DE algorithms.

Ort, förlag, år, upplaga, sidor
2016. s. 512-516
Nyckelord [en]
Decomposition, Differential evolution, Evolutionary algorithm, Multi-objective optimization, Pareto-optimality, Algorithms, Artificial intelligence, Evolutionary algorithms, Optimization, Pareto principle, Multi-objective differential evolutions, Multi-objective optimization problem, Multiple-objectives, Non-dominated Sorting, Optimization problems, Pair-wise comparison, Multiobjective optimization
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-31681Scopus ID: 2-s2.0-84969286344ISBN: 9789897581724 (tryckt)OAI: oai:DiVA.org:mdh-31681DiVA, id: diva2:932682
Konferens
8th International Conference on Agents and Artificial Intelligence, ICAART 2016, 24 February 2016 through 26 February 2016
Tillgänglig från: 2016-06-02 Skapad: 2016-06-02 Senast uppdaterad: 2018-01-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Personposter BETA

Xiong, Ning

Sök vidare i DiVA

Av författaren/redaktören
Xiong, NingLeon, Miguel
Av organisationen
Inbyggda system
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 28 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf