Asymptotic expansion of the expected discounted penalty function in a two-scalestochastic volatility risk model.
2014 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hp
Studentuppsats (Examensarbete)
Abstract [en]
In this Master thesis, we use a singular and regular perturbation theory to derive
an analytic approximation formula for the expected discounted penalty function.
Our model is an extension of Cramer–Lundberg extended classical model because
we consider a more general insurance risk model in which the compound Poisson
risk process is perturbed by a Brownian motion multiplied by a stochastic volatility
driven by two factors- which have mean reversion models. Moreover, unlike
the classical model, our model allows a ruin to be caused either by claims or by
surplus’ fluctuation.
We compute explicitly the first terms of the asymptotic expansion and we show
that they satisfy either an integro-differential equation or a Poisson equation. In
addition, we derive the existence and uniqueness conditions of the risk model with
two stochastic volatilities factors.
Ort, förlag, år, upplaga, sidor
2014.
Nyckelord [en]
risk model, asymptotic expansion, stochastic volatility, singular and regular perturbation theory
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:mdh:diva-26100OAI: oai:DiVA.org:mdh-26100DiVA, id: diva2:755257
Ämne / kurs
Matematik/tillämpad matematik
Presentation
2014-10-01, U3-104, 13:00 (Engelska)
Handledare
Examinatorer
2014-10-142014-10-142014-10-14Bibliografiskt granskad