https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gas turbine prognostics via Temporal Fusion Transformer
Mälardalens universitet, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
Mälardalens universitet, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-8466-356X
2024 (Engelska)Ingår i: Aeronautical Journal, ISSN 0001-9240Artikel i tidskrift (Refereegranskat) Epub ahead of print
Abstract [en]

Gas turbines play a vital role in various industries. Timely and accurately predicting their degradation is essential for efficient operation and optimal maintenance planning. Diagnostic and prognostic outcomes aid in determining the optimal compressor washing intervals. Diagnostics detects compressor fouling and estimates the trend up to the current time. If the forecast indicates fast progress in the fouling trend, scheduling offline washing during the next inspection event or earlier may be crucial to address the fouling deposit comprehensively. This approach ensures that compressor cleaning is performed based on its actual health status, leading to improved operation and maintenance costs. This paper presents a novel prognostic method for gas turbine degradation forecasting through a time-series analysis. The proposed approach uses the Temporal Fusion Transformer model capable of capturing time-series relationships at different scales. It combines encoder and decoder layers to capture temporal dependencies and temporal-attention layers to capture long-range dependencies across the encoded degradation trends. Temporal attention is a self-attention mechanism that enables the model to consider the importance of each time step degradation in the context of the entire degradation profile of the given health parameter. Performance data from multiple two-spool turbofan engines is employed to train and test the method. The test results show promising forecasting ability of the proposed method multiple flight cycles into the future. By leveraging the insights provided by the method, maintenance events and activities can be scheduled in a proactive manner. Future work is to extend the method to estimate remaining useful life.

Ort, förlag, år, upplaga, sidor
CAMBRIDGE UNIV PRESS , 2024.
Nyckelord [en]
gas turbines prognostics, remaining useful life, Temporal Fusion Transformer, compressor washing, predictive maintenance, maintenance optimisation
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-66545DOI: 10.1017/aer.2024.40ISI: 001207525400001Scopus ID: 2-s2.0-85191409334OAI: oai:DiVA.org:mdh-66545DiVA, id: diva2:1856808
Tillgänglig från: 2024-05-08 Skapad: 2024-05-08 Senast uppdaterad: 2024-05-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Fentaye, Amare DesalegnKyprianidis, Konstantinos

Sök vidare i DiVA

Av författaren/redaktören
Fentaye, Amare DesalegnKyprianidis, Konstantinos
Av organisationen
Framtidens energi
I samma tidskrift
Aeronautical Journal
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 17 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf