https://www.mdu.se/

mdu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Heart failure survival prediction using novel transfer learning based probabilistic features
Khwaja Fareed Univ Engn & Informat Technol, Inst Comp Sci, Rahim Yar Khan, Pakistan..
Khwaja Fareed Univ Engn & Informat Technol, Inst Comp Sci, Rahim Yar Khan, Pakistan..
Khwaja Fareed Univ Engn & Informat Technol, Inst Comp Sci, Rahim Yar Khan, Pakistan..
Khwaja Fareed Univ Engn & Informat Technol, Inst Informat Technol, Rahim Yar Khan, Pakistan..
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: PeerJ Computer Science, E-ISSN 2376-5992, Vol. 10, artikel-id e1894Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Heart failure is a complex cardiovascular condition characterized by the heart's inability to pump blood effectively, leading to a cascade of physiological changes. Predicting survival in heart failure patients is crucial for optimizing patient care and resource allocation. This research aims to develop a robust survival prediction model for heart failure patients using advanced machine learning techniques. We analyzed data from 299 hospitalized heart failure patients, addressing the issue of imbalanced data with the Synthetic Minority Oversampling (SMOTE) method. Additionally, we proposed a novel transfer learning-based feature engineering approach that generates a new probabilistic feature set from patient data using ensemble trees. Nine fine-tuned machine learning models are built and compared to evaluate performance in patient survival prediction. Our novel transfer learning mechanism applied to the random forest model outperformed other models and state-of-the-art studies, achieving a remarkable accuracy of 0.975. All models underwent evaluation using 10-fold crossvalidation and tuning through hyperparameter optimization. The findings of this study have the potential to advance the field of cardiovascular medicine by providing more accurate and personalized prognostic assessments for individuals with heart failure.

Ort, förlag, år, upplaga, sidor
PEERJ INC , 2024. Vol. 10, artikel-id e1894
Nyckelord [en]
Transfer learning, Machine learning, Heart failure, Feature engineering
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-66353DOI: 10.7717/peerj-cs.1894ISI: 001182217200001Scopus ID: 2-s2.0-85190872607OAI: oai:DiVA.org:mdh-66353DiVA, id: diva2:1848338
Tillgänglig från: 2024-04-03 Skapad: 2024-04-03 Senast uppdaterad: 2024-05-08Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Rehman, Atiq Ur

Sök vidare i DiVA

Av författaren/redaktören
Rehman, Atiq Ur
Av organisationen
Inbyggda system
I samma tidskrift
PeerJ Computer Science
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 23 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf