https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Automata Learning for Compliance Evaluation of Communication Protocols on an NFC Handshake Example
AVL List Gmbh, Graz, Austria.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0001-7586-0409
2024 (Engelska)Ingår i: Lecture Notes in Computer Science, Springer Science and Business Media Deutschland GmbH , 2024, s. 170-190Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Near-Field Communication (NFC) is a widely adopted standard for embedded low-power devices in very close proximity. In order to ensure a correct system, it has to comply to the ISO/IEC 14443 standard. This paper concentrates on the low-level part of the protocol (ISO/IEC 14443-3) and presents a method and a practical implementation that complements traditional conformance testing. We infer a Mealy state machine of the system-under-test using active automata learning. This automaton is checked for bisimulation with a specification automaton modelled after the standard, which provides a strong verdict of conformance or non-conformance. As a by-product, we share some observations of the performance of different learning algorithms and calibrations in the specific setting of ISO/IEC 14443-3, which is the difficulty to learn models of system that a) consist of two very similar structures and b) very frequently give no answer (i.e. a timeout as an output).

Ort, förlag, år, upplaga, sidor
Springer Science and Business Media Deutschland GmbH , 2024. s. 170-190
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 14390 LNCS
Nyckelord [en]
Automata Learning, Bisimulation, Formal Methods, NFC, Protocol Compliance, Automata theory, ISO Standards, Learning algorithms, Learning systems, Near field communication, Automaton learning, Bisimulations, Close proximity, Communications protocols, Compliance evaluations, Conformance testing, ISO/IEC-14443, Low-power devices, Near-field communication
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mdh:diva-65246DOI: 10.1007/978-3-031-49252-5_13Scopus ID: 2-s2.0-85180149916ISBN: 9783031492518 (tryckt)OAI: oai:DiVA.org:mdh-65246DiVA, id: diva2:1823987
Konferens
8th International Conference on Engineering of Computer-Based Systems, ECBS 2023, Västerås, 16 October 2023 through 18 October 2023
Tillgänglig från: 2024-01-03 Skapad: 2024-01-03 Senast uppdaterad: 2024-03-01Bibliografiskt granskad
Ingår i avhandling
1. Model-Driven Security Test Case Generation Using Threat Modeling and Automata Learning
Öppna denna publikation i ny flik eller fönster >>Model-Driven Security Test Case Generation Using Threat Modeling and Automata Learning
2024 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Automotive systems are not only becoming more open through developments like advanced driving assistance functions, autonomous driving, vehicle-to-everything communication and software-defined vehicle functionality, but also more complex. At the same time, technology from standard IT systems become frequently adopted in this setting. These developments have two negative effects on correctness and security: the rising complexity adds potential flaws and vulnerabilities while the increased openness expands attack surfaces and entry points for adversaries. To provide more secure systems, the amount of verifying system security through testing has to be significantly increased, which is also a requirement by international regulation and standards. Due to long supply chains and non-disclosure policies, verification methods often have to operate in a black box setting. This thesis strives therefore towards finding more efficient methods of automating test case generation in both white and black box scenarios. The focus lies on communication protocols used in vehicular systems. The main approaches used are model-based methods. We provide a practical method to automatically obtain behavioral models in the form of state machines of communication protocol implementations in real-world settings using automata learning. We also provide a means to automatically check these implementation models for their compliance with a specification (e.g., from a standard). We furthermore present a technique to automatically derive test-cases to point out found deviations on the actual system.We also present a method to create abstract cybersecurity test case specifications from semi-formal threat models using attack trees. 

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2024
Serie
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 355
Nationell ämneskategori
Data- och informationsvetenskap Datavetenskap (datalogi)
Forskningsämne
datavetenskap
Identifikatorer
urn:nbn:se:mdh:diva-66165 (URN)978-91-7485-638-5 (ISBN)
Presentation
2024-04-25, U2-024 och via Teams, Mälardalens universitet, Västerås, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-03-04 Skapad: 2024-03-01 Senast uppdaterad: 2024-04-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Sirjani, MarjanSjödin, Mikael

Sök vidare i DiVA

Av författaren/redaktören
Marksteiner, S.Sirjani, MarjanSjödin, Mikael
Av organisationen
Inbyggda system
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 62 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf