Detecting Koszulness and related homological properties from the algebra structure of Koszul homology Visa övriga samt affilieringar
2018 (Engelska) Ingår i: Nagoya mathematical journal, ISSN 0027-7630, E-ISSN 2152-6842, Vol. 238, s. 47-85Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
Let k be a field and R a standard graded k-algebra. We denote by H^R the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of R. We discuss the relationship between the multiplicative structure of H^R and the property that R is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincaré series. As an application, we show that the Poincaré series of all finitely generated modules over a stretched Cohen-Macaulay local ring are rational, sharing a common denominator.
Ort, förlag, år, upplaga, sidor 2018. Vol. 238, s. 47-85
Nationell ämneskategori
Algebra och logik
Forskningsämne matematik/tillämpad matematik
Identifikatorer URN: urn:nbn:se:mdh:diva-64389 DOI: 10.1017/nmj.2018.20 ISI: 000529209500003 Scopus ID: 2-s2.0-85084306405 OAI: oai:DiVA.org:mdh-64389 DiVA, id: diva2:1801337
2023-09-292023-09-292023-11-15 Bibliografiskt granskad