https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Accurate detection of paroxysmal atrial fibrillation with certified-GAN and neural architecture search
Department of Electrical Engineering, Tarbiat Modares University, Tehran, Iran.
Shiraz University of Medical Science, Shiraz, Iran.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
Visa övriga samt affilieringar
2023 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 13, nr 1Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a novel machine learning framework for detecting PxAF, a pathological characteristic of electrocardiogram (ECG) that can lead to fatal conditions such as heart attack. To enhance the learning process, the framework involves a generative adversarial network (GAN) along with a neural architecture search (NAS) in the data preparation and classifier optimization phases. The GAN is innovatively invoked to overcome the class imbalance of the training data by producing the synthetic ECG for PxAF class in a certified manner. The effect of the certified GAN is statistically validated. Instead of using a general-purpose classifier, the NAS automatically designs a highly accurate convolutional neural network architecture customized for the PxAF classification task. Experimental results show that the accuracy of the proposed framework exhibits a high value of 99.0% which not only enhances state-of-the-art by up to 5.1%, but also improves the classification performance of the two widely-accepted baseline methods, ResNet-18, and Auto-Sklearn, by [Formula: see text] and [Formula: see text].

Ort, förlag, år, upplaga, sidor
NLM (Medline) , 2023. Vol. 13, nr 1
Nyckelord [en]
Atrial Fibrillation, Electrocardiography, Humans, Machine Learning, Neural Networks, Computer, artificial neural network, human
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-63915DOI: 10.1038/s41598-023-38541-8ISI: 001030642400009PubMedID: 37452165Scopus ID: 2-s2.0-85164756079OAI: oai:DiVA.org:mdh-63915DiVA, id: diva2:1784492
Tillgänglig från: 2023-07-26 Skapad: 2023-07-26 Senast uppdaterad: 2023-09-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Loni, MohammadDaneshtalab, MasoudSjödin, Mikael

Sök vidare i DiVA

Av författaren/redaktören
Loni, MohammadDaneshtalab, MasoudSjödin, Mikael
Av organisationen
Inbyggda system
I samma tidskrift
Scientific Reports
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 43 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf