https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evolving Industrial Networks: Data-Driven Network Traffic Modelling and Monitoring
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system. Rise - Research Institutes of Sweden, Sweden.ORCID-id: 0000-0001-5808-1382
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The concept of Industrial IoT encompasses the joint applicability of operation and information technologies to expand the efficiency expectation of automation to green and flexible processes with innovative products and services. Future industrial networks need to accommodate, manage and guarantee the performance of converged traffic from different technologies. The network infrastructures are transforming to enable data availability for advanced applications and enhance flexibility. Nonetheless, the pace of IT–OT networks development has been slow despite their considered benefits in optimising performance and enhancing information flows. The hindering factors vary from general challenges in performance management of the diverse traffic for greenfield configuration to the lack of outlines for evolving from brownfield installations without interrupting the operation of ongoing processes. One tangible gap is the lack of insight into the brownfield installation in operation. This dissertation explores the possible evolutionary steps from brownfield installations to future industrial networks.The goal is to ensure the uninterrupted performance of brownfield installations on the path of evolving to the envisioned smart factories. It addresses the gap between the state of the art and state of practice, and the technical prerequisites of the integrated traffic classes for the development of an IIoT monitoring mechanism. A novel lightweight learning algorithm at the sensor level for an IIoT compliance monitoring system, together with a case study of traffic collected from a brownfield installation, provides the baseline of comparative analysis between the common assumptions and the state of practice. The identified gaps and challenges to address them directs the research for proposing a two-step aggregated traffic modelling by introducing new measurement method and performance indicator parameters for capturing the communication dynamics. Lastly, the sensor-level learning algorithm is refined with the knowledge gained from practice and research contributions to propose an in-band telemetry mechanism for monitoring aggregated network traffic.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalens universitet, 2023.
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 375
Nationell ämneskategori
Kommunikationssystem Datorsystem Annan elektroteknik och elektronik
Forskningsämne
datavetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-62063ISBN: 978-91-7485-588-3 (tryckt)OAI: oai:DiVA.org:mdh-62063DiVA, id: diva2:1743021
Disputation
2023-06-13, Lambda, Mälardalens universitet, Västerås, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-03-14 Skapad: 2023-03-13 Senast uppdaterad: 2023-05-23Bibliografiskt granskad
Delarbeten
1. Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT
Öppna denna publikation i ny flik eller fönster >>Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT
2018 (Engelska)Ingår i: Sensors, E-ISSN 1424-8220, Vol. 18, nr 5, artikel-id 1532Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Digitalization is a global trend becoming ever more important to our connected and sustainable society. This trend also affects industry where the Industrial Internet of Things is an important part, and there is a need to conserve spectrum as well as energy when communicating data to a fog or cloud back-end system. In this paper we investigate the benefits of fog computing by proposing a novel distributed learning model on the sensor device and simulating the data stream in the fog, instead of transmitting all raw sensor values to the cloud back-end. To save energy and to communicate as few packets as possible, the updated parameters of the learned model at the sensor device are communicated in longer time intervals to a fog computing system. The proposed framework is implemented and tested in a real world testbed in order to make quantitative measurements and evaluate the system. Our results show that the proposed model can achieve a 98% decrease in the number of packets sent over the wireless link, and the fog node can still simulate the data stream with an acceptable accuracy of 97%. We also observe an end-to-end delay of 180 ms in our proposed three-layer framework. Hence, the framework shows that a combination of fog and cloud computing with a distributed data modeling at the sensor device for wireless sensor networks can be beneficial for Industrial Internet of Things applications.

Nationell ämneskategori
Kommunikationssystem
Identifikatorer
urn:nbn:se:mdh:diva-62051 (URN)10.3390/s18051532 (DOI)000435580300231 ()29757227 (PubMedID)2-s2.0-85047063861 (Scopus ID)
Tillgänglig från: 2023-03-10 Skapad: 2023-03-10 Senast uppdaterad: 2023-04-12Bibliografiskt granskad
2. From brown-field to future industrial networks, a case study
Öppna denna publikation i ny flik eller fönster >>From brown-field to future industrial networks, a case study
2021 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 11, nr 7, artikel-id 3231Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The network infrastructures in the future industrial networks need to accommodate, manage and guarantee performance to meet the converged Internet technology (IT) and operational technology (OT) traffics requirements. The pace of IT-OT networks development has been slow despite their considered benefits in optimizing the performance and enhancing information flows. The hindering factors vary from general challenges in performance management of the diverse traffic for green-field configuration to lack of outlines for evolving from brown-fields to the converged network. Focusing on the brown-field, this study provides additional insight into a brown-field characteristic to set a baseline that enables the subsequent step development towards the future’s expected converged networks. The case study highlights differences between real-world network behavior and the common assumptions for analyzing the network traffic covered in the literature. Considering the unsatisfactory performance of the existing methods for characterization of brownfield traffic, a performance and dynamics mixture measurement is proposed. The proposed method takes both IT and OT traffic into consideration and reduces the complexity, and consequently improves the flexibility, of performance and configuration management of the brown-field.

Ort, förlag, år, upplaga, sidor
MDPI AG, 2021
Nyckelord
Brown-fields characteristics, Converged networks, Network performance measurement
Nationell ämneskategori
Elektroteknik och elektronik Kommunikationssystem
Identifikatorer
urn:nbn:se:mdh:diva-53928 (URN)10.3390/app11073231 (DOI)000638324800001 ()2-s2.0-85104080852 (Scopus ID)
Tillgänglig från: 2021-04-22 Skapad: 2021-04-22 Senast uppdaterad: 2023-03-13Bibliografiskt granskad
3. Modeling and Profiling of Aggregated Industrial Network Traffic
Öppna denna publikation i ny flik eller fönster >>Modeling and Profiling of Aggregated Industrial Network Traffic
2022 (Engelska)Ingår i: Applied Sciences, E-ISSN 2076-3417, Vol. 12, nr 2, artikel-id 667Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The industrial network infrastructures are transforming to a horizontal architecture to enable data availability for advanced applications and enhance flexibility for integrating new tech-nologies. The uninterrupted operation of the legacy systems needs to be ensured by safeguarding their requirements in network configuration and resource management. Network traffic modeling is essential in understanding the ongoing communication for resource estimation and configuration management. The presented work proposes a two-step approach for modeling aggregated traffic classes of brownfield installation. It first detects the repeated work-cycles and then aims to identify the operational states to profile their characteristics. The performance and influence of the approach are evaluated and validated in two experimental setups with data collected from an industrial plant in operation. The comparative results show that the proposed method successfully captures the temporal and spatial dynamics of the network traffic for characterization of various communication states in the operational work-cycles. 

Ort, förlag, år, upplaga, sidor
MDPI, 2022
Nyckelord
Aggregated traffic classes, Industrial network, Traffic modeling
Nationell ämneskategori
Kommunikationssystem
Identifikatorer
urn:nbn:se:mdh:diva-57099 (URN)10.3390/app12020667 (DOI)000758834900001 ()2-s2.0-85122764100 (Scopus ID)
Tillgänglig från: 2022-02-24 Skapad: 2022-02-24 Senast uppdaterad: 2023-03-13Bibliografiskt granskad
4. Data-driven Method for In-band Network Telemetry Monitoring of Aggregated Traffic
Öppna denna publikation i ny flik eller fönster >>Data-driven Method for In-band Network Telemetry Monitoring of Aggregated Traffic
2022 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Under the vision of industry 4.0, industrial networks are expected to accommodate a large amount of aggregated traffic of both operation and information technologies to enable the integration of innovative services and new applications. In this respect, guaranteeing the uninterrupted operation of the installed systems is an indisputable condition for network management. Network measurement and performance monitoring of the underlying communication states can provide invaluable insight for safeguarding the system performance by estimating required and available resources for flexible integration without risking network interruption or degrading network performance. In this work, we propose a data-driven in-band telemetry method to monitor the aggregated traffic of the network at the switch level. The method learns and models the communication states by local network-level measurement of communication intensity. The approximated model parameters provide information for network management for prognostic purposes and congestion avoidance resource planning when integrating new applications. Applying the method also addresses the consequence of telemetry data overhead on QoS since the transmission of telemetry packets can be done based on the current state of the network. The monitoring at the switch level is a step towards the Network-AI for future industrial networks.

Nationell ämneskategori
Kommunikationssystem Datorsystem
Identifikatorer
urn:nbn:se:mdh:diva-62049 (URN)10.1109/NCA57778.2022.10013583 (DOI)2-s2.0-85147334168 (Scopus ID)9798350397307 (ISBN)
Konferens
21st IEEE International Symposium on Network Computing and Applications, NCA 2022, Virtual, Online, 14 December 2022 through 16 December 2022
Tillgänglig från: 2023-03-10 Skapad: 2023-03-10 Senast uppdaterad: 2023-04-12Bibliografiskt granskad

Open Access i DiVA

fulltext(1219 kB)29 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1219 kBChecksumma SHA-512
1717984daa1daba665c1004f29678d590d420f95b7b24dbe989dbd05dd0d601a4e0669530b371609b1748b585d9158c6d9fe1f1820837c8919ab25ba8e55e1e1
Typ fulltextMimetyp application/pdf

Person

Lavassani, Mehrzad

Sök vidare i DiVA

Av författaren/redaktören
Lavassani, Mehrzad
Av organisationen
Inbyggda system
KommunikationssystemDatorsystemAnnan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 29 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 243 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf