https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
Energy Pvt Ltd Sahiwal Coal Power Complex, Huaneng Shandong Ruyi Pakistan, Sahiwal 57000, Punjab, Pakistan.
Univ Engn & Technol, Dept Mech Engn, Taxila 47080, Punjab, Pakistan.
Univ Engn & Technol, Dept Mech Engn, Lahore 54890, Punjab, Pakistan.
Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Alexandria Engineering Journal, ISSN 1110-0168, E-ISSN 2090-2670, Vol. 61, nr 3, s. 1864-1880Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The vibrations of bearings holding the high-speed shaft of a steam turbine are critically controlled for the safe and reliable power generation at the power plants. In this paper, two artificial intelligence (AI) process models, i.e., artificial neural network (ANN) and support vector machine (SVM) based relative vibration modeling of a steam turbine shaft bearing of a 660 MW supercritical steam turbine system is presented. After extensive data processing and machine learning based visualization tests performed on the raw operational data, ANN and SVM models are trained, validated and compared by external validation tests. ANN has outperformed SVM in terms of better prediction capability and is, therefore, deployed for simulating the constructed operating scenarios. ANN process model is tested for the complete load range of power plant, i.e., from 353 MW to 662 MW and 4.07% reduction in the relative vibration of the bearing is predicted by the network. Further, various vibration reduction operating strategies are developed and tested on the validated and robust ANN process model. A selected operating strategy which has predicted a promising reduction in the relative vibration of bearing is selected. In order to confirm the effectiveness of the prediction of the ANN process model, the selected operating strategy is implemented on the actual operation of the power plant. The resulting reduction in the relative vibrations of the turbine's bearing, which is less than the alarm limit, are confirmed. This cements the role of ANN process model to be used as an operational excellence tool resulting in vibration reduction of high-speed rotating equipment. (c) 2021 THE AUTHORS. Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Ort, förlag, år, upplaga, sidor
2022. Vol. 61, nr 3, s. 1864-1880
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-57734DOI: 10.1016/j.aej.2021.07.0391110-0168ISI: 000765309500007Scopus ID: 2-s2.0-85112569410OAI: oai:DiVA.org:mdh-57734DiVA, id: diva2:1650158
Tillgänglig från: 2022-04-06 Skapad: 2022-04-06 Senast uppdaterad: 2024-05-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Salman, Chaudhary Awais

Sök vidare i DiVA

Av författaren/redaktören
Salman, Chaudhary Awais
Av organisationen
Framtidens energi
I samma tidskrift
Alexandria Engineering Journal
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 66 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf