https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PERFORMANCE ASSURANCE FOR CLOUD-NATIVE APPLICATIONS
Mälardalens högskola, Akademin för innovation, design och teknik.
2021 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Preserving the performance of cloud services according to service level agreements (SLAs) is one of the most important challenges in cloud infrastructure. Since the workload is always changing incrementally or decremental, managing the cloud resources efficiently is considered an important challenge to satisfy non-functional requirements like high availability and cost. Although many common approaches like predictive autoscaling could solve this problem, it is still not so efficient because of its constraints like requiring a workload pattern as training data. Reinforcement machine learning (RL) can be considered a significant solution for this problem. Even though reinforcement learning needs some time to be stable and needs many trials to decide the value of factors like discount rate, this approach can adapt with the dynamic workload. In this  thesis, through a controlled experiment research method, we show how a model-free reinforcement algorithm like Q-learning can adapt to the dynamic workload by applying horizontal autoscaling to keep the performance of cloud services at the required level. Furthermore, the Amazon web services (AWS) platform is used to demonstrate the efficiency of the Q-learning algorithm in dealing with dynamic workload and achieving high availability.  

Ort, förlag, år, upplaga, sidor
2021. , s. 36
Nyckelord [en]
Performance of cloud services, dynamic workload, cloud infrastructure, reinforcement learning (RL), machine learning, service level agreements (SLAs), Amazon web services (AWS)
Nationell ämneskategori
Programvaruteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-56089OAI: oai:DiVA.org:mdh-56089DiVA, id: diva2:1599851
Ämne / kurs
Datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2021-10-13 Skapad: 2021-10-02 Senast uppdaterad: 2021-10-14Bibliografiskt granskad

Open Access i DiVA

fulltext(1543 kB)183 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1543 kBChecksumma SHA-512
1fec69b13dafe83e2ca8636c5fb648096d69d7fafdd255f63117b49171ea5fd142475f4ab0020ab8b0dd3c3cbb8d8777c2bc4c53a07daa204f6c6faba0c9b208
Typ fulltextMimetyp application/pdf

Av organisationen
Akademin för innovation, design och teknik
Programvaruteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 183 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 349 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf