https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MuBiNN: Multi-level binarized recurrent neural network for EEG signal classification
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
2020 (Engelska)Ingår i: Proceedings - IEEE International Symposium on Circuits and Systems, Institute of Electrical and Electronics Engineers Inc. , 2020, artikel-id 102250Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Recurrent Neural Networks (RNN) are widely used for learning sequences in applications such as EEG classification. Complex RNNs could be hardly deployed on wearable devices due to their computation and memory-intensive processing patterns. Generally, reduction in precision leads much more efficiency and binarized RNNs are introduced as energy-efficient solutions. However, naive binarization methods lead to significant accuracy loss in EEG classification. In this paper, we propose a multi-level binarized LSTM, which significantly reduces computations whereas ensuring an accuracy pretty close to the full precision LSTM. Our method reduces the delay of the 3-bit LSTM cell operation 47× with less than 0.01% accuracy loss.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2020. artikel-id 102250
Nyckelord [en]
EEG signal classification, Long short - Term memory (LSTM), Recurrent Neural Networks (RNNs), Wearable devices, Energy efficiency, Long short-term memory, Accuracy loss, Cell operation, EEG classification, Energy efficient, Learning sequences, Recurrent neural network (RNN), Biomedical signal processing
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-55486ISI: 000696570700247Scopus ID: 2-s2.0-85108991421ISBN: 9781728133201 (tryckt)OAI: oai:DiVA.org:mdh-55486DiVA, id: diva2:1580696
Konferens
52nd IEEE International Symposium on Circuits and Systems, ISCAS 2020, 10 October 2020 through 21 October 2020
Tillgänglig från: 2021-07-15 Skapad: 2021-07-15 Senast uppdaterad: 2022-11-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Scopus

Person

Sinaei, SimaDaneshtalab, Masoud

Sök vidare i DiVA

Av författaren/redaktören
Sinaei, SimaDaneshtalab, Masoud
Av organisationen
Inbyggda systemInbyggda system
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 63 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf