https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of the correlation between test cases dependency and their semantic text similarity
Mälardalens högskola, Akademin för innovation, design och teknik.
2020 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

An important step in developing software is to test the system thoroughly. Testing software requires a generation of test cases that can reach large numbers and is important to be performed in the correct order. Certain information is critical to know to schedule the test cases incorrectly order and isn’t always available. This leads to a lot of required manual work and valuable resources to get correct. By instead analyzing their test specification it could be possible to detect the functional dependencies between test cases. This study presents a natural language processing (NLP) based approach and performs cluster analysis on a set of test cases to evaluate the correlation between test case dependencies and their semantic similarities. After an initial feature selection, the test cases’ similarities are calculated through the Cosine distance function. The result of the similarity calculation is then clustered using the HDBSCAN clustering algorithm. The clusters would represent test cases’ relations where test cases with close similarities are put in the same cluster as they were expected to share dependencies. The clusters are then validated with a Ground Truth containing the correct dependencies. The result is an F-Score of 0.7741. The approach in this study is used on an industrial testing project at Bombardier Transportation in Sweden. 

Ort, förlag, år, upplaga, sidor
2020. , s. 16
Nyckelord [en]
Software Testing, Test optimization, NLP, Dependency, Semantic Similarity, Clustering, Cosine Similarity, HDBSCAN
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:mdh:diva-48942OAI: oai:DiVA.org:mdh-48942DiVA, id: diva2:1445069
Externt samarbete
Bombardier Transportation Sweden AB
Ämne / kurs
Datavetenskap
Handledare
Examinatorer
Tillgänglig från: 2020-06-24 Skapad: 2020-06-22 Senast uppdaterad: 2020-06-24Bibliografiskt granskad

Open Access i DiVA

fulltext(689 kB)398 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 689 kBChecksumma SHA-512
0dc06d98b8913b4927584d63257e6e390568c31fb8207aa4debcc5a5d938cfe84920d491bfe35fa22ad2454c241d0c4e90b5af838f5ed2c6ca489b68326a0007
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Andersson, Filip
Av organisationen
Akademin för innovation, design och teknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 398 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 629 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf