https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Data Driven Anomaly Control Detection for Railway Propulsion Control Systems
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
2020 (Engelska)Självständigt arbete på avancerad nivå (magisterexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

The popularity of railway transportation has been on the rise over the past decades, as it has been able to provide safe, reliable, and highly available service. The main challenge within this domain is to reduce the costs of preventive maintenance and improve operational efficiency. To tackle these challenges, one needs to investigate and provide new approaches to enable quick and timely data collection, transfer, and storage aiming at easier and faster analysis whenever needed.

In this thesis, we aim at enabling the monitoring and analysis of collected signal data from a train propulsion system. The main idea is to monitor and analyze collected signal data gathered during the regular operation of the propulsion control unit or data recorded during the regular train tests in the real-time simulator. To do so, we have implemented a solution to enable train signal data collection and its storage into a .txt and .CSV file to be further analyzed in the edge node and in the future connected to the cloud for further analysis purposes. In our analysis, we focus on identifying signal anomalies and predicting potential failures using MathWorks tools. Two machine learning techniques, unsupervised and supervised learning, are implemented. Additionally, in this thesis, we have investigated ways of how data can be efficiently managed. We have also reviewed existing edge computing solutions and anomaly detection approaches using a survey as a suitable method to identify relevant works within the state of the art.

Ort, förlag, år, upplaga, sidor
2020. , s. 44
Nationell ämneskategori
Inbäddad systemteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-48520OAI: oai:DiVA.org:mdh-48520DiVA, id: diva2:1437916
Externt samarbete
Bombardier Transportation
Ämne / kurs
Datavetenskap
Presentation
2020-06-05, Zoom, track 5, Västerås, 10:45 (Engelska)
Handledare
Examinatorer
Projekt
RELIANCETillgänglig från: 2020-06-16 Skapad: 2020-06-09 Senast uppdaterad: 2020-06-16Bibliografiskt granskad

Open Access i DiVA

Data Driven Anomaly Control Detection for Railway Propulsion Control Systems(2638 kB)253 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2638 kBChecksumma SHA-512
0117a92a4773c0b2adc20b3eb3c39d198db9fe412a0db0cc6b645d131a1c6e3c07ef4a52486b5e27a7e2e4c52bade47260241e9f80cb76c8aaf3e19a78157a34
Typ fulltextMimetyp application/pdf

Av organisationen
Inbyggda system
Inbäddad systemteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 253 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 604 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf