mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Full-scale comparison of N2O emissions from SBR N/DN operation versus one-stage deammonification MBBR treating reject water: - and optimization with pHset-point
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Purac AB, Sweden.ORCID-id: 0000-0001-8869-6513
IVL Swedish Environmental Research Institute, Sweden.ORCID-id: 0000-0001-8050-0715
IVL Swedish Environmental Research Institute, Sweden.ORCID-id: 0000-0002-0740-0651
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-8034-4043
2019 (Engelska)Ingår i: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 79, nr 8, s. 1616-1625Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

To be able to fulfill the Paris agreement regarding anthropogenic greenhouse gases, all potential 12 emissions must be mitigated. Wastewater treatment plants should aim to eliminate emissions of the 13 most potent greenhouse gas, nitrous oxide. In this study, these emissions were measured at a full-scale 14 reject water treatment tank during two different operation modes: nitrification/denitrification (N/DN) 15 operating as a sequencing batch reactor (SBR), and deammonification (nitritation/anammox) as a moving 16 bed biofilm reactor (MBBR). Nitrous oxide was measured both in the water phase and in the off-gas. The 17 treatment process emitted significantly less nitrous oxide in deammonification mode 0.14-0.7 %, 18 compared to 10 % of Total Nitrogen in N/DN mode. The decrease can be linked to the change feeding 19 strategy, concentration in nitrite, load of ammonia oxidized, shorter aeration time, no ethanol dosage 20 and the introduction of biofilm. Further, evaluation was done how the operational pH set point 21 influenced the emissions in deammonification mode. Lower concentrations of nitrous oxide was 22 measured in water phase at higher pH (7.5-7.6) than at lower pH (6.6-7.1). This is believed to be mainly 23 because of the lower aeration ratio and increased complete denitrification at the higher pH set point.

Ort, förlag, år, upplaga, sidor
2019. Vol. 79, nr 8, s. 1616-1625
Nyckelord [en]
biological nitrogen removal, nitrous oxide (N2O) emissions, deammonification, pH
Nationell ämneskategori
Vattenbehandling
Forskningsämne
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-43256DOI: 10.2166/wst.2019.163ISI: 000474351200020PubMedID: 31169520Scopus ID: 2-s2.0-85067434025OAI: oai:DiVA.org:mdh-43256DiVA, id: diva2:1307218
Konferens
IWA Nutrient Removal and Recovery Conference18 - 21 November 2018, Brisbane, Australia
Tillgänglig från: 2019-04-26 Skapad: 2019-04-26 Senast uppdaterad: 2019-10-11Bibliografiskt granskad
Ingår i avhandling
1. Start-up and operational strategies for deammonification plants: - a study with one-stage moving bed biofilm reactors treating reject water
Öppna denna publikation i ny flik eller fönster >>Start-up and operational strategies for deammonification plants: - a study with one-stage moving bed biofilm reactors treating reject water
2019 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

To limit eutrophication, wastewater treatment plants use biological methods to convert degraded nitrogen to nitrogen gas. Deammonification, or partial nitritation in combination with anammox, has been shown to be an energy efficient process. This process is currently implemented in approximately 150 full-scale plants, and mainly on reject waters, the liquid fraction after dewatering of anaerobic digestion at municipal wastewater treatment plants. Implementation has been impeded by the slow growth of anammox bacteria, and 99% of the full-scale plants using the process have been using different methods to inoculate the process with anammox bacteria from elsewhere. Separate reject water installations, however, have shown high nitrous oxide emissions, which could increase the total carbon footprint.

The objective of this thesis was to develop and validate a start-up concept using the moving bed biofilm reactor (MBBR) technique applied to reject water, and to investigate how the operational strategies could be optimized to limit potential nitrous oxide emissions. The results show that a one-stage deammonification process based on the MBBR technology with indigenous anammox bacteria originating from the reject water can be set up within a applicable time frame (<100 days). This was validated in two laboratory reactors and in two full-scale studies. Reject water originating from both mesophilic and thermophilic digested sludge was used. Anammox growth and nitrogen reduction were detected with fluorescence in situ hybridization (FISH) and chemical analysis, respectively. The start-up time was 72 days in the laboratory and 120 days in full-scale. In laboratory scale, there was no improvement in start-up time when adding external anammox inoculum. Results from a screening study of seven reject waters and their content of anammox bacteria using qPCR indicated the presence of 104–105 genome units anammox per mL in reject water, which could be sufficient for starting up deammonification plants within an applicable time frame.

A final case study shows the potential of decreasing nitrous oxide emissions when a full-scale plant treating reject water was modified from nitrification/denitrification using a Sequencing Batch Reactor (SBR) to a deammonification process using the MBBR technique. The nitrous oxide emissions decreased from 10% to 0.1–0.7% of total nitrogen load with the change of operation mode. Further optimization by pH set point led to lower emission values. This effect is thought to be linked to the lower aeration ratio and increase in complete denitrification of dissolved nitrous oxide at higher pH.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2019
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 290
Nationell ämneskategori
Vattenbehandling
Forskningsämne
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-43258 (URN)978-91-7485-427-5 (ISBN)
Disputation
2019-06-10, Delta, Mälardalens högskola, Västerås, 13:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Vinnova, 2015-02422
Tillgänglig från: 2019-04-26 Skapad: 2019-04-26 Senast uppdaterad: 2019-05-06Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Personposter BETA

Zambrano, Jesus

Sök vidare i DiVA

Av författaren/redaktören
Kanders, LindaYang, Jing-jingBaresel, ChristianZambrano, Jesus
Av organisationen
Framtidens energi
I samma tidskrift
Water Science and Technology
Vattenbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 77 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf