MCSoCs, with their scalability and parallel computation power, provide an ideal implementation base for modern embedded systems. However, chip designers are facing a design challenge wherein shrinking component sizes though have improved density but started stressing energy budget. This phenomenon, that is called utilization wall, has revolutionized the semiconductor industry by shifting the main purpose of chip design from a performance-driven approach to a complex multiobjective one. The area of the chip which cannot be powered is known as dark silicon. In this chapter, we address the multiobjectivism in dark silicon age. First, we overview state-of-the-art works in a categorized manner. Second, we introduce a NoC-based MCSoC architecture, named shift sprinting, in order to increase overall reliability as well as gain high performance. Third, we explain an application mapping approach, called round rotary mapping, for HWNoC-based MCSoC in order to first balance the usage of wireless links by avoiding congestion over wireless routers and second spread temperature across the whole chip by utilizing dark silicon. Finally, we conclude the chapter by providing a future outlook of dark silicon research trend.