mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Machine Learning Approach to Classify Pedestrians’ Event based on IMU and GPS
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-3802-4721
Visa övriga samt affilieringar
2019 (Engelska)Ingår i: International Conference on Modern Intelligent Systems Concepts MISC'18, 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper investigates and implements six Machine Learning (ML) algorithms, i.e. Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Extra Tree (ET), and Gradient Boosted Trees (GBT) to classify different Pedestrians’ events based on Inertial Measurement Unit (IMU) and Global Positioning System (GPS) signals. Pedestrians’ events are pedestrian movements as the first step of H2020 project called SimuSafe1 with a goal to reduce traffic fatalities by doing risk assessments of the pedestrians. The movements the MLs’ models are attempting to classify are standing, walking, and running. Data, i.e. IMU, GPS sensor signals and other contextual information are collected by a smartphone through a controlled procedure. The smartphone is placed in five different positions onto the body of participants, i.e. arm, chest, ear, hand and pocket. The recordings are filtered, trimmed, and labeled. Next, samples are generated from small overlapping sections from which time and frequency domain features are extracted. Three different experiments are conducted to evaluate the performances in term of accuracy of the MLs’ models in different circumstances. The best performing MLs’ models determined by the average accuracy across all experiments is Extra Tree (ET) with a classification accuracy of 91%. 

Ort, förlag, år, upplaga, sidor
2019.
Nyckelord [en]
Machine Learning (ML), Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree(DT), Random Forest (RF), Extra Tree (ET), Gradient Boosted Trees (GBT), classification, Pedestrians’ events, Inertial Measurement Unit (IMU), Global Positioning System (GPS) signals
Nationell ämneskategori
Teknik och teknologier Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-41724OAI: oai:DiVA.org:mdh-41724DiVA, id: diva2:1273320
Konferens
International Conference on Modern Intelligent Systems Concepts MISC'18, 12 Dec 2018, Rabat, Morocco
Projekt
SimuSafe : Simulator of Behavioural Aspects for Safer TransportTillgänglig från: 2018-12-20 Skapad: 2018-12-20 Senast uppdaterad: 2019-06-04Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Ahmed, Mobyen Uddin

Sök vidare i DiVA

Av författaren/redaktören
Ahmed, Mobyen Uddin
Av organisationen
Inbyggda system
Teknik och teknologierDatorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 91 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf