https://www.mdu.se/

mdu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Reconfigurable Network-on-Chip for 3D Neural Network Accelerators
Islamic Azad University, Tehran, Iran.
University of Tehran and IPM School of ComputerScience, Tehran, Iran.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
Islamic Azad University, Tehran, Iran.
2018 (Engelska)Ingår i: 2018 12th IEEE/ACM International Symposium on Networks-on-Chip, NOCS 2018, Institute of Electrical and Electronics Engineers Inc. , 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Parallel hardware accelerators for large-scale neural networks typically consist of several processing nodes, arranged as a multi- or many-core system-on-chip, connected by a network-on-chip (NoC). Recent proposals also benefit from the emerging 3D memory-on-logic architectures to provide sufficient bandwidth for neural networks. Handling the heavy traffic between neurons and memory and also the multicast-based inter-neuron traffic, which often varies over time, is the most challenging design consideration for the networks-on-chip in such accelerators. To address these issues, a reconfigurable network-on-chip architecture for 3D memory-on-logic neural network accelerators is presented in this paper. The reconfigurable NoC can adapt its topology to the on-chip traffic patterns. It can be also configured as a tree-like structure to support multicast-based neuron-to-neuron and memory-to-neuron traffic of neural networks. The evaluation results show that the proposed architecture can better manage the multicast-based traffic of neural networks than some state-of-the-art topologies and considerably increase throughput and power efficiency. 

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers Inc. , 2018.
Serie
International Symposium on Networks-on-Chip, ISSN 2474-3739
Nyckelord [en]
Network-on-Chip, Neural Networks, Hardware Accelerator, Reconfiguration
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-41506DOI: 10.1109/NOCS.2018.8512170ISI: 000759131800018Scopus ID: 2-s2.0-85057297781ISBN: 9781538648933 (tryckt)OAI: oai:DiVA.org:mdh-41506DiVA, id: diva2:1268527
Konferens
12th IEEE/ACM International Symposium on Networks-on-Chip, NOCS 2018, Torino, Italy, 4-5 October 2018
Tillgänglig från: 2018-12-06 Skapad: 2018-12-06 Senast uppdaterad: 2022-11-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Daneshtalab, Masoud

Sök vidare i DiVA

Av författaren/redaktören
Daneshtalab, Masoud
Av organisationen
Inbyggda system
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 172 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf