mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Process Metrics are not Bad Predictors of Fault Proneness
Mälardalens högskola.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system. IS (Embedded Systems).ORCID-id: 0000-0003-0611-2655
2017 (Engelska)Ingår i: Proceedings - 2017 IEEE International Conference on Software Quality, Reliability and Security Companion, QRS-C 2017, 2017, s. 493-499, artikel-id 8004363Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The correct prediction of faulty modules or classes has a number of advantages such as improving the quality of software and assigning capable development resources to fix such faults. There have been different kinds of fault/defect prediction models proposed in literature, but a great majority of them makes use of static code metrics as independent variables for making predictions. Recently, process metrics have gained a considerable attention as alternative metrics to use for making trust-worthy predictions. The objective of this paper is to investigate different combinations of static code and process metrics for evaluating fault prediction performance. We have used publicly available data sets, along with a frequently used classifier, Naive Bayes, to run our experiments. We have, both statistically and visually, analyzed our experimental results. The statistical analysis showed evidence against any significant difference in fault prediction performances for a variety of different combinations of metrics. This reinforced earlier research results that process metrics are as good as predictors of fault proneness as static code metrics. Furthermore, the visual inspection of box plots revealed that the best set of metrics for fault prediction is a mix of both static code and process metrics. We also presented evidence in support of some process metrics being more discriminating than others and thus making them as good predictors to use.

Ort, förlag, år, upplaga, sidor
2017. s. 493-499, artikel-id 8004363
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-37016DOI: 10.1109/QRS-C.2017.85ISI: 000426819400077Scopus ID: 2-s2.0-85034452693ISBN: 978-1-5386-2072-4 (digital)OAI: oai:DiVA.org:mdh-37016DiVA, id: diva2:1160361
Konferens
The 2017 IEEE International Workshop on Software Engineering and Knowledge Management SEKM'17, 25 Jul 2017, Prague, Sweden
Projekt
TESTMINE - Mining Test Evolution for Improved Software Regression Test Selection (KKS)Tillgänglig från: 2017-11-27 Skapad: 2017-11-27 Senast uppdaterad: 2018-03-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Afzal, Wasif

Sök vidare i DiVA

Av författaren/redaktören
Stanic, BiljanaAfzal, Wasif
Av organisationen
Mälardalens högskolaInbyggda system
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 24 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf