mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Big Data Analytics in Health Monitoring at Home
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-3802-4721
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system. IS (Embedded Systems).ORCID-id: 0000-0002-1212-7637
2017 (Engelska)Ingår i: Medicinteknikdagarna 2017 MTD 2017, 2017Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper proposed a big data analytics approach applied in the projects ESS-H and E-care@home in the context of biomedical and health informatics with the advancement of information fusion, data abstraction, data mining, knowledge discovery, learning, and reasoning [1][2]. Data are collected through the projects, considering both the health parameters, e.g. temperature, bio-impedance, skin conductance, heart sound, blood pressure, pulse, respiration, weight, BMI, BFP, movement, activity, oxygen saturation, blood glucose, heart rate, medication compliance, ECG, EMG, and EEG, and the environmental parameters e.g. force/pressure, infrared (IR), light/luminosity, photoelectric, room-temperature, room-humidity, electrical usage, water usage, RFID localization and accelerometers. They are collected as semi-structured/unstructured, continuous/periodic, digital/paper record, single/multiple patients, once/several-times, etc. and stored in a central could server [5]. Thus, with the help of embedded system, digital technologies, wireless communication, Internet of Things (IoT) and smart sensors, massive quantities of data (so called ‘Big Data’) with value, volume, velocity, variety, veracity and variability are achieved [2]. The data analysis work in the following three steps. In Step1, pre-processing, future extraction and selection are performed based on a combination of statistical, machine learning and signal processing techniques. A novel strategy to fuse the data at feature level and as well as at data level considers a defined fusion mechanism [3]. In Step2, a combination of potential sequences in the learning and search procedure is investigated. Data mining and knowledge discovery, using the refined data from the above for rule extraction and knowledge mining, with support for anomaly detection, pattern recognition and regression are also explored here [4]. In Step3, adaptation of knowledge representation approaches is achieved by combining different artificial intelligence methods [3] [4]. To provide decision support a hybrid approach is applied utilizing different machine learning algorithms, e.g. case-based reasoning, and clustering [4]. The approach offers several data analytics tasks, e.g. information fusion, anomaly detection, rules and knowledge extraction, clustering, pattern identification, correlation analysis, linear regression, logic regression, decision trees, etc. Thus, the approach assist in decision support, early detection of symptoms, context awareness and patient’s health status in a personal environment.

Ort, förlag, år, upplaga, sidor
2017.
Nationell ämneskategori
Medicinteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-37029OAI: oai:DiVA.org:mdh-37029DiVA, id: diva2:1158522
Konferens
Medicinteknikdagarna 2017 MTD 2017, 09 Oct 2017, Västerås, Sweden
Projekt
ESS-H - Embedded Sensor Systems for Health Research Profileecare@homeTillgänglig från: 2017-11-20 Skapad: 2017-11-20 Senast uppdaterad: 2017-11-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Ahmed, Mobyen UddinBegum, Shahina

Sök vidare i DiVA

Av författaren/redaktören
Ahmed, Mobyen UddinBegum, Shahina
Av organisationen
Inbyggda system
Medicinteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 700 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf