mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
In-Vehicle Stress Monitoring Based on EEG Signal
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1212-7637
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-7305-7169
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-3802-4721
2017 (Engelska)Ingår i: International Journal of Engineering Research and Applications, ISSN 2248-9622, E-ISSN 2248-9622, Vol. 7, nr 7, 55-71 s.Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In recent years, improved road safety by monitoring human factors i.e., stress, mental load, sleepiness, fatigue etc. of vehicle drivers has been addressed in a number of studies. Due to the individual variations and complex dynamic in-vehicle environment systems that can monitor such factors of a driver while driving is challenging. This paper presents a drivers’ stress monitoring system based on electroencephalography (EEG) signals enabling individual-focused computational approach that can generate automatic decision. Here, a combination of different signal processing i.e., discrete wavelet transform, largest Lyapunov exponent (LLE) and modified covariance have been applied to extract key features from the EEG signals. Hybrid classification approach Fuzzy-CBR (case-based reasoning) is used for decision support. The study has focused on both long and short-term temporal assessment of EEG signals enabling monitoring in different time intervals. In short time interval, which requires complex computations, the classification accuracy using the proposed approach is 79% compare to a human expert. Accuracy of EEG in developing such system is also compared with other reference signals e.g., Electrocardiography (ECG), Finger temperature, Skin conductance, and Respiration. The results show that in decision making the system can handle individual variations and provides decision in each minute time interval.

Ort, förlag, år, upplaga, sidor
2017. Vol. 7, nr 7, 55-71 s.
Nyckelord [en]
Keywords: Stress, Monitoring System, Electroencephalography (EEG), Case-Based Reasoning (CBR), Largest Lyapunov Exponent (LLE)
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-37035DOI: 10.9790/9622-0707095571OAI: oai:DiVA.org:mdh-37035DiVA: diva2:1153857
Projekt
SafeDriver: A Real Time Driver's State Monitoring and Prediction System
Tillgänglig från: 2017-10-31 Skapad: 2017-10-31 Senast uppdaterad: 2017-11-29Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas

Övriga länkar

Förlagets fulltext

Personposter BETA

Begum, ShahinaBarua, ShaibalAhmed, Mobyen Uddin

Sök vidare i DiVA

Av författaren/redaktören
Begum, ShahinaBarua, ShaibalAhmed, Mobyen Uddin
Av organisationen
Inbyggda system
I samma tidskrift
International Journal of Engineering Research and Applications
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 14 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf