https://www.mdu.se/

mdu.sePublikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Adaptive Weather Correction of Energy Consumption Data
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Eskilstuna Kommunfastighet, Eskilstuna, Sweden.ORCID-id: 0000-0003-3530-0209
2017 (Engelska)Ingår i: Energy Procedia, Elsevier Ltd , 2017, s. 3397-3402Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

A framework for adaptive weather correction of energy consumption data is presented. The procedure is conducted in two steps: I) a regression model is trained on a building's recent historical energy consumption, weather and calendar data; II) energy consumption is predicted by using long term weather data as input to the trained model. Thus the buildings long term energy consumption is obtained, from which the building's expected (alias normalised or weather corrected) yearly energy consumption is derived. For older Swedish residential buildings, the proposed regression method matches traditional heating degree days method in accuracy. But for low energy and near zero energy buildings the regression method is more accurate, especially for years of extreme weather and for building with more complex installations such as heat pumps or solar thermal panels. The main benefit of the developed weather correction method is that it adapts to the data, therefore most buildings (or any kinds of weather dependent processes) can be weather corrected in an automated way. © 2017 The Authors. Published by Elsevier Ltd.

Ort, förlag, år, upplaga, sidor
Elsevier Ltd , 2017. s. 3397-3402
Nyckelord [en]
adaptive regression, normalisation, statistical learning, weather correction, Buildings, Energy conservation, Regression analysis, Correction method, Energy consumption datum, Residential building, Traditional heating, Zero energy building (ZEB), Energy utilization
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-36065DOI: 10.1016/j.egypro.2017.03.778ISI: 000404967903075Scopus ID: 2-s2.0-85020709866OAI: oai:DiVA.org:mdh-36065DiVA, id: diva2:1120631
Konferens
8th International Conference on Applied Energy, ICAE 2016, 8 October 2016 through 11 October 2016
Tillgänglig från: 2017-07-06 Skapad: 2017-07-06 Senast uppdaterad: 2020-07-06Bibliografiskt granskad
Ingår i avhandling
1. Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
Öppna denna publikation i ny flik eller fönster >>Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

There is a global need to reduce energy consumption and integrate a larger share of renewable energy production while meeting expectations for human well-being and economic growth. Buildings have a key role to play in this transition to more sustainable cities and communities.

Building energy modeling (BEM) and simulation are needed to gain detailed knowledge ofthe heat flows and parameters that determine the thermal energy performance of a building. Remote sensing techniques have enabled the generation of geometrical representations of existing buildings on the scale of entire cities. However, parameters describing the thermal properties ofthe building envelope and the technical systems are usually not readily accessible in a digitized form and need to be inferred. Further, buildings are complex systems with indoor environmental conditions that vary dynamically under the stochastic influence of weather and occupant behavior and the availability of metering data is often limited. Consequently, robust inference is needed to handle high and time-varying uncertainty and a varying degree of data availability.

This thesis starts with investigation of meteorological reanalyses, remote sensing and onsite metering data sources. Next, the developed dynamic and physics-based BEM, consisting of a thermal network and modeling procedures for the technical systems, passive heat gains and boundary conditions, is presented. Finally, the calibration framework is presented, including a method to transform a deterministic BEM into a fully probabilistic BEM, an iterated extended Kalman filtering algorithm and a probabilistic calibration procedure to infer uncertain parameters and incorporate prior knowledge.

The results suggest that the proposed BEM is sufficiently detailed to provide actionable insights, while remaining identifiable given a sufficiently informative prior model. Such a prior model can be obtained based solely on knowledge of the underlying physical properties of the parameters, but also enables incorporation of more specific information about the building. The probabilistic calibration approach has the capability to combine evidence from both data and knowledge-based sources; this is necessary for robust inference given the often highly uncertain reality in which buildings operate.

The contributions of this thesis bring us a step closer to producing models of existing buildings, on the scale of whole cities, that can simulate reality sufficiently well to gain actionable insights on thermal energy performance, enable buildings to act as active components of the energy system and ultimately increase the operational resilience of the built environment.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2020
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 318
Nationell ämneskategori
Energisystem
Forskningsämne
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-49378 (URN)978-91-7485-473-2 (ISBN)
Disputation
2020-09-10, Milos + digital (Zoom), Mälardalens högskola, Västerås, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-07-06 Skapad: 2020-07-06 Senast uppdaterad: 2020-07-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lundström, Lukas

Sök vidare i DiVA

Av författaren/redaktören
Lundström, Lukas
Av organisationen
Framtidens energi
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 116 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf