mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Finite State Machine Household's Appliances Models for Non-intrusive Energy Estimation
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0003-4589-7045
2017 (Engelska)Ingår i: Energy Procedia, Elsevier Ltd , 2017, s. 2157-2162Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Non-intrusive loads monitoring NILM is a set of algorithms that aims to leverage smart meter data by extracting more useful information from the smart meter data. NILM involves disaggregation of individual household loads in term of their individual energy consumption. It is considered as low cost alternative to better understand the electrical network and reduce complexity of the management operations. It offers to households monitoring and control possibilities to their everyday energy consumption. This paper contributes toward non-intrusive energy estimation of household's loads through data-driven appliances modelling approach based on finite state machine models that mimic the real operations cycle. First, the models are built based on features extractions and events clustering via dynamic fuzzy clustering. The resulting clusters are further de-noised and processed to reveal accurate appliances operations states. Then finite state machine models are created using transition probability matrix and an optimization approach to extract the operation cycle that best describe real appliance operations. The evaluation of the framework was performed using two public datasets showing its performance to learn appliances models and energy estimation with an average error of 5% to 22%. © 2017 The Authors.

Ort, förlag, år, upplaga, sidor
Elsevier Ltd , 2017. s. 2157-2162
Nyckelord [en]
Appliances Modeling, Energy estimation, FSMs models, NILM, Energy utilization, Equipment, Dynamic fuzzy clustering, Finite state machine model, Management operation, Monitoring and control, Optimization approach, Transition probability matrix, Smart meters
Nationell ämneskategori
Energiteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-36068DOI: 10.1016/j.egypro.2017.03.609ISI: 000404967902042Scopus ID: 2-s2.0-85020734215OAI: oai:DiVA.org:mdh-36068DiVA, id: diva2:1120623
Konferens
8th International Conference on Applied Energy, ICAE 2016, 8 October 2016 through 11 October 2016
Tillgänglig från: 2017-07-06 Skapad: 2017-07-06 Senast uppdaterad: 2018-07-25Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Maher, AzazaWallin, Fredrik

Sök vidare i DiVA

Av författaren/redaktören
Maher, AzazaWallin, Fredrik
Av organisationen
Framtidens energi
Energiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 80 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf