mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Experimental Performance Evaluation of Autoscaling Algorithms for Complex Workflows
Delft University of Technology, Netherlands.
Umeå University, Sweden.
University of Würzburg, Germany.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1364-8127
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: ICPE '17 Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, 2017, s. 75-86Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Simplifying the task of resource management and scheduling for customers, while still delivering complex Quality-of-Service (QoS), is key to cloud computing. Many autoscaling policies have been proposed in the past decade to decide on behalf of cloud customers when and how to provision resources to a cloud application utilizing cloud elasticity features. However, in prior work, when a new policy is proposed, it is seldom compared to the state-of-the-art, and is often compared only to static provisioning using a predefined QoS target. This reduces the ability of cloud customers and of cloud operators to choose and deploy an autoscaling policy. In our work, we conduct an experimentalperformance evaluation of autoscaling policies, using as application model workflows, a commonly used formalism for automating resource management for applications with well-defined yet complex structure. We present a detailed comparative study of general state-of-the-art autoscaling policies, along with two new workflow-specific policies. To understand the performance differences between the 7 policies, we conduct various forms of pairwise and group comparisons. We report both individual and aggregated metrics. Our results highlight the trade-offs between the suggested policies, and thus enable a better understanding of the current state-of-the-art.

Ort, förlag, år, upplaga, sidor
2017. s. 75-86
Nationell ämneskategori
Data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-35688DOI: 10.1145/3030207.3030214Scopus ID: 2-s2.0-85019018662ISBN: 978-1-4503-4404-3 (tryckt)OAI: oai:DiVA.org:mdh-35688DiVA, id: diva2:1108306
Konferens
ICPE '17 Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, L'Aquila, Italy — April 22-26, 2017
Projekt
Future factories in the CloudTillgänglig från: 2017-06-12 Skapad: 2017-06-12 Senast uppdaterad: 2018-01-24Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Papadopoulos, Alessandro

Sök vidare i DiVA

Av författaren/redaktören
Papadopoulos, Alessandro
Av organisationen
Inbyggda system
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 12 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf