mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Supervised Household’s Loads Pattern Recognition
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0003-4589-7045
2016 (Engelska)Ingår i: 2016 IEEE Electrical Power and Energy Conference, EPEC 2016 / [ed] IEEE, 2016, artikel-id 7771718Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The deployment of smart meters is a promising innovation that comes to enhance the energy efficiency measures in the smart grid. The smart meter enables distributors to better understand the electrical network and reduce complexity of the management operations. It offers to households monitoring and control possibilities to their everyday energy consumption through the distribution of detailed information on household consumption and its evolution. This involves disaggregation of individual household loads in term of their individual energy consumption known as Non intrusive loads monitoring. In this paper, we present a supervised NILM approach based on dynamic fuzzy c-means events clustering and KNN label matching. First, a filtering method is involved to enhance the edge/events detection step. Then we perform a dynamic Fuzzy c-means clustering procedures to build appliances signature data based on active and reactive power measurements taking into account the time of day usage. The data base is further refined to map potential clusters centers that best identify the different appliances. A performance evaluation of the proposed approach is conducted showing a recognition rate over 90% for high consumption loads and promising results for low consumption loads.

Ort, förlag, år, upplaga, sidor
2016. artikel-id 7771718
Nyckelord [en]
Energy, buildings, Energy management
Nationell ämneskategori
Energisystem
Forskningsämne
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-34702DOI: 10.1109/EPEC.2016.7771718ISI: 000391421300045Scopus ID: 2-s2.0-85010483370ISBN: 9781509019199 (tryckt)OAI: oai:DiVA.org:mdh-34702DiVA, id: diva2:1068094
Konferens
2016 IEEE Electrical Power and Energy Conference, EPEC 2016; Ottawa; Canada; 12 October 2016 through 14 October 2016
Projekt
EXTRACTTillgänglig från: 2017-01-24 Skapad: 2017-01-24 Senast uppdaterad: 2017-02-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Maher, AzazaWallin, Fredrik

Sök vidare i DiVA

Av författaren/redaktören
Maher, AzazaWallin, Fredrik
Av organisationen
Framtidens energiInbyggda system
Energisystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 16 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf